ANÁLISE DE CAPACIDADE DE GERAÇÃO DE ENERGIA ELÉTRICA A PARTIR DE SISTEMA FOTOVOLTÁICO NA REGIÃO DE JOÃO PESSOA/PB.

Jackson Taylor Costa de Lima da Silva

Jó Sales de Medeiros Júnior

Luiz Felipe Liberato da Costa

Oberdan Holanda Souto

Victor Luiz dos Santos Leandro

RESUMO

Análise da capacidade de geração de energia elétrica para residência com necessidade de potência de 2 KW na cidade de João Pessoa/PB, através de sistema de geração fotovoltaico.

Palavras-chave: geração; sustentabilidade; renovável; fotovoltaica; engenharia elétrica;

ABSTRACT

Analysis of the electric power generation capacity for a residence with power requirement of 2 KW in the city of João Pessoa/PB through a photovoltaic generation system.

Keywords: generation; sustainability; renewable; photovoltaic; electrical engineering;

ÁREA TEMÁTICA

Engenharia Civil

INTRODUÇÃO

Nos dias atuais, têm-se discutido sobre fontes alternativas de energia elétrica. Dessenvolveram-se várias tecnologias para conseguir esse objetivo. Os sistemas fotovoltáicos apresentam-se como uma boa solução para a maior parte das regiões brasileiras.

A energia solar fotovoltáica é a energia obtida através da conversão da luz em eletricidade (efeito fotovoltáico), sendo a célula fotovoltaica, um dispositivo fabricado com material semicondutor, a unidade fundamental desse processo de conversão (GALDINO; PINHO, 2014).

Segundo (Portal Solar), a energia fotovoltáica já ocupa uma das três principais fontes de eletricidade na matriz energética brasileira. O Brasil apresenta um potencial de geração elevado em comparação com países da Europa. Pode-se notar o petencial brasileiro através dos gráficos da figura 1.

Pela análise dos mapas de irradiação solar, pode-se perceber que o brasil apresenta uma capacidade de geração maior que a maior parte dos países europeus. Contudo, a implementação de um sistema de geração fotovoltaico de energia envolve custo. Dessa forma, seria importante saber qual o petencial de geração de energia solar em joão Pessoa.

Segundo (Solar Brasil) os sistemas fotovoltaicos são divididos em dois tipos: on-grid e off-grid. O sistema on-grid permite que a unidade consumidora possa ser alimentada eletricamente pela rede da concessinária e simultaneamente pelos painés solares. No caso do sistema off-grid, a unidade é alimentada apenas pela energia fotovoltaica.

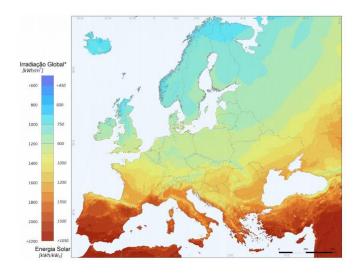


Figura.1. Mapa europeu de irradiação solar. Fonte: PVGIS, 2013.

Essa pesquisa buscou quantificar o potencial de energia elétrica (KWh) a partir de geradores solares para atender residências localizas cidade paraibana de João Pessoa.

Estes dados são importantes para a definição dos locais onde os painés solares possam ser colocado, bem como subsidiar a análise de viabilidade técnica desse sistemas em residências.

A capacidade de geração de energia pelo sistema fotovoltaico depende irradiação na cidade e do período do ano. Segundo (Galdino,Pinho), para atender uma determinada residência a potência do gerador deve ter a capacidade de acordo com a equação 1, sendo P(potência de pico do necessária), E (consumo médio mensal) e Td (taxa de dessempenho).

Dada a equação, pode-se observar que a capacidade de gerar potência elétrica varia de região para região, devido a irradiação e fenômenos climáticos, representados pela variável horas de sol pleno (HSP). Assim, cada cidade pode ter um valor de HSP diferente. Segundo, (Galdino,Pinho), o fator de dessempenho varia entre 0,7 a 1 e depende da concepção do projetista.

Para (Alvarenga), o valor da quantidade de horas de sol pleno refere-se total de horas em um dia que a irradiação solar na superfície é igual ou maior que 1 quilo Watts por metro quadrado. Dessa forma, pode ser aproximada dividindo-se a irradiação média por mil.

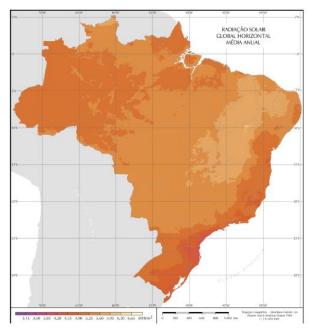


Figura 2. Mapa de irradiação solar brasileiro. Fonte: Abreu, Ruther, Martins, Pereira.

$$P = \frac{E}{Hsp * Td}$$
 Eq.1 (GALDINO; PINHO, 2014).

METODOLOGIA

Escolheu-se prédios residencias como objeto pará análise do consumo médio anual de energia elétrica. O sistema, a princípio, deverá atender total ou parcialmente às casas.

Para determinar o valor da irradiação solar na superfície, foi utilizado o software Sun-data, fornecido no endereçõ enetrônico: http://www.cresesb.cepel.br/index.php?section=sundata e com base, nos cálculos apresentados, pôde-se realizar uma projeção da irradiação em cada mês do ano.

Utilizou-se as coordenadas geográficas em um ponto no município de João Pessoa, Paraíba, com 7,117101 graus de latitude sul e 34,84425 graus de longitude oeste. Com base no programa, chegou-se ao resultado abaixo com relação a irradiação solar por mês.

Para a simulação, escolheu-se um valor para a potência de pico de 2 KW, consumo compatível com uma residência. Ressalta-se que este é um valor

aproximado. Caso se esteja pretendendo o valor real em cada residência, deve-se ralizar um levantamento de carga.

Figura 3. Valores de hsp durante o ano em João Pessoa/Pb. Fonte: Sun-data.

Com base na equação 1, pôde-se estimar a capacidade de geração de energia elétrica do sistema fotovoltaico de 2 KW de pico.

Dessa forma, a capacidade de geração de energia elétrica passa ser de acordo com equação 2. Utilizou-se um fator de dessempenho de 0,8. Sendo E (energia elétrica diária gerada), *Td* (fator de dessempenho) e *hsp* (horas de sol pleno), pôde-se estimar a capacidade de geração para cada mês do ano.

$$E(KWh) = Td * P * hsp$$
Eq.2

RESULTADOS

Os valores da quantidade média de horas de sol pleno em cada mês foi posta na tabela 1. Observou-se, na tabela e no gráfico 1 que o valor da hsp tem uma variação de forma que o maior valor é observado no mês de novembro e o menor no mês de junho.

Observou-se que entre os meses de agosto a dezembro, o valor da irradiação e da hsp encontram-se acima da média e entre os meses de março a julho, o valor da hsp abaixo da média. Isso pode ser explicado pelo fato de que durante os meses de agosto a dezembro não são meses com chuvas regulares. Dessa forma, a irradiação solar apresenta uma menor dispersão devido às nuvens.

A capacidade de geração, de acordo com a equação 2, é apresentada no gráfico abaixo, de acordo com os valores adotados para a simulação. A equação 2 é utilizada para encontrar a energia gerada em um dia. Dessa forma, multiplicando o valor diário pela quantidade de dias em cada mês, chegou-se a capacidade de geração de eletricitade total por mês.

Mês	Horas de Sol Pleno
Janeiro	5,36
Fevereiro	5,72
Março	5,50
Abril	5,03
Maio	5,06
Junho	4,28
Julho	4,56
Agosto	5,39
Setembro	5,69
Outubro	6,42
Novembro	6,61
Dezembro	6,33

Tabela 1. Horas de sol pleno estimada para João Pessoa/Pb.

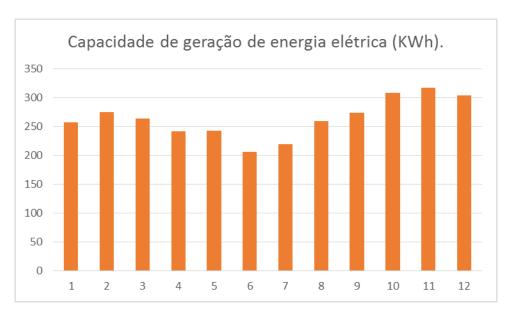


Figura 4. Capacidade de geração de energia para um sistema fotovoltaico de 2 KW em João Pessoa/Pb.

DISCUSSÃO

Segundo (Abreu, Martins, Pereira, Ruther) fatores como a umidade relativa do ar, o formato das nuvens e a concentração de núvem na região, interferem na quantidade de horas de sol pleno em uma região. No Brasil, a maior parte das núvens são do tipo altostratos, sendo a referência para a estimativa da hsp. A nebulosidade pode, também, influenciar a hsp, uma vez contribui para diminuir o valor.

Para os autores acima citados, o relevo e a vegetação da região também influencia o valor de hsp, posto que parte da irradiação que chega a uma superfície é refletida para o painel solar.

Para (Pillar), parte da irradiação solar que chega à Terra, é refletida devido a gases presentes na atmosfera, outra parte é absorvida ou refletida devido a nebulosidade. Dessa forma, o valor da irradiação solar que chega ao gerador solar depende do clima da região. No período chuvoso, observa-se uma concentração de nuvens maior que no verão. No período seco, a nebulosidade é menor e a capacidade de geração de energia almenta.

Segundo (Pillar), a variação da umidade relativa do ar faz variar, também o valor da irradiação solar que chega à superfície. Dessa forma, quanto maior for a umidade relativa do ar, menor será o valor da irradiação na superfície.

No litoral paraibano, temos a Planície Litorânea que é formada pelas praias e terras arenosas. Na região da mata, temos os tabuleiros que são formados por acúmulos de terras que descem de lugares altos (PARAÍBA TOTAL, 2013).

A vegetação litorânea da Paraíba apresenta matas, manguezais e cerrados, que recebem a denominação de "tabuleiro", formado por gramíneas e arbustos tortuosos, predominantemente representados por batiputás e mangabeiras, entre outras espécies. Formadas por floresta Atlântica, as matas registram a presença de árvores altas, sempre verdes, como a peroba e a sucupira. Localizados nos estuários, os manguezais apresentam árvores com raízes de suporte, adaptadas à sobrevivência neste tipo de ambiente natural (PARAÍBA TOTAL, 2013).

Dessa forma, pode-se observar que os fatores como umidade relativa do ar, relevo da cidade, a vegetação e o clima de João Pessoa/Pb influenciam o valor da

quantidade de horas de sol pleno apresentada na tabela 1 e conseguente variação na capacidade de geração de energia elétrica do sistema fotovoltaico, mostrado na figura 4.

Ressalta-se que o projetista deve levar em consideração, ainda, o local onde serão instalados os paineis, bem como a relação entre os equipamentos, tensão máxima suportável e temperatura do local. Esses resultados são estimativas mostrando a capacidade de geração de energia elétrica.

CONCLUSÕES

Diante do exposto, conclui-se que a geração de energia elétrica através de sistemas fotovoltaicos na cidade de João Pessoa/Pb varia de acordo com o período do ano. Os meses de março a julho são os meses com menor capacidade geração de energia, devido a influências climáticas. Esse é o período chuvoso no litoral paraibano. Já os meses de agosto a dezembro, observa-se uma capacidade de geração de energia maior que a média.

A quantidade de energia elétrica gerada depende da potência do sistema fotovoltaico (no caso adotado por esse atrigo, o sistema fornece 2 KW para a uma residência), do clima e do relevo da cidade. Para João Pessoa, pôde-se concluir que a quantidade de horas de sol pleno (hsp) média é de 5,5 horas.

Consequentemente, percebe-se que a a cidade tem uma boa capacidade de geração de energia elétrica a partir de sistemas fotovoltaicos uma vez que, em média, quase metade do dia os paineis solares podem receber irradiação acima de um (01) quilowatts por metro quadrado.

REFERÊNCIAS BIBLIOGRÁFICAS

ALVARENGA, CARLOS ALBERTO. Como dimensionar um gerador fotovoltaico com baterias. **Engenharia Solenerg**. Disponível em: http://www.solenerg.com.br/files/Como-dimensionar-um-gerador-fotovoltaico-combaterias.pdf. Acessado em 27/05/2017.

PORTAL DO SOL. Energia fotovoltaica. **Portal do sol**. Disponível em http://www.portalsolar.com.br/energia-fotovoltaica.html. Acessado em 27/05/2017.

GALDINO, MARCO ANTÔNIO; PINHO, JOÃO TAVARES. Manual de engenharia para sistemas fotovoltaicos. **CEPEL-DTE-CRESESB**. Rio de janeiro, 2014.

HULD, THOMAS; PASCOA, IRENE PINEDO. Photovoltaic Solar Eletricity Potential in European Countries. **PVGIS**; **União Europeia**. Ispra, (Itália), 2012.

Pillar, V.D. Clima e vegetação. **UFRGS, Departamento de Botânica,** 1995. Disponível em http://ecoqua.ecologia.ufrgs.br. Acessado em 27/05/2017.

ABREL, SAMUEL LUNA DE; MARTINS, FERNANDO RAMOS; PEREIRA, ENIO BUENO; RUTHER, RICARDO. Atlas Brasileiro de Energia Solar. **INPE**. São José dos Campos, 2006.

PARAÍBA TOTAL. Geografia da Paraíba. **Paraíba Total**. Disponível em: http://www.paraibatotal.com.br/a-paraiba/geografia. Acessado em 27/05/2017.

SOBRE OS AUTORES

Jackson Taylor Costa de Lima da Silva

Graduando em Engenharia Elétrica pela Faculdade Maurício de Nassau. Com experiência na área de projetos de distribuição de baixa e média tensão, Servidor Público com atuação na Procuradoria Geral do Estadual da Paraíba no Setor Dívida Ativa e tributos.

Jó Sales de Medeiros Júnior

Estudante de Engenharia Elétrica pela Faculdade Maurício de Nassau, e de Ciências da Computação pela Universidade Federal da Paraíba. Possui formação de Técnico em eletrônica pelo Instituto Federal de Educação, Ciência e Tecnologia da Paraíba. Com conhecimento em desenvolvimento de sistemas embarcados utilizando a plataforma Arduino e com interesse em IOT.

Luiz Felipe Liberato da Costa

Estudante de Engenharia Elétrica pela Faculdade Maurício de Nassau. Possui formação profissional de eletricista, comandos elétricos e CFTV pelo Senai-PB. Atua na área da Tecnologia de Informação dando o suporte e gerenciando redes e acessos remotos a servidores públicos e privados.

Oberdan Holanda Souto

Possui graduação em engenharia elétrica pelo Instituto Federal de Educação, Ciência e Tecnologia da Paraíba (2014) e especialização em MBA-Saúde e Segurança no Trabalho pela Faculdade Internacional da Paraíba (2015). Atualmente é Engenheiro Eletricista do Instituto Nacional do Seguro Social e Professor no curso de Engenharia Elétrica da Universidade Maurício de Nassau. Tem experiência na área de Engenharia Elétrica.

Victor Luiz dos Santos Leandro

Graduando no Curso de Engenharia Elétrica no Centro Universitário UNINassau - Campus João Pessoa. Funcionário Público atuando em Projetos de LAN, WAN e MANs.Tem como foco nas suas pesquisas projetos em Smart Grids, Smart Cities e Redes Convergentes. Possui experiência na área de Ciências da Computação com foco em Sistemas de Informações direcionados a educação à distância. Atuou como Gestor de TI em cidades paraibanas e Professor em Projetos de Inclusão Digital.