

ANÁLISE NUMÉRICA DE UM SUPORTE PARA CÉLULA DE CARGA SUBMETIDA À TRAÇÃO

-

CEFET/RJ Campus Angra dos Reis – Departamento de Engenharia Mecânica Rua do Areal, 522 - Parque Mambucaba 23942-030 – Angra dos Reis – RJ

Resumo: O objetivo principal deste trabalho é verificar o dimensionamento de um suporte para célula de carga, utilizado em uma máquina de ensaio de fadiga para cabo de aço submetido à força de tração de 150 tf (tonelada força). Além disso, este estudo visa contribuir com o ensino da Engenharia, pois trata de um projeto real que propicia o aluno usar ferramentas CAD/CAE e aplicar o aprendizado e conhecimentos obtidos durante o curso de Engenharia Mecânica. Como o mecanismo é muito robusto, foi realizada uma análise considerando, inicialmente, o aço ASTM A-36 a fim de verificar se o componente resistia os esforços, reduzindo assim o custo da manufatura do componente. Inicialmente, foi gerado um modelo 3D no SOLIDWORKS com base no desenho 2D preliminar em CAD e realizada uma simulação numérica no ANSYS por meio do Método dos Elementos Finitos. Para validação da simulação, uma análise teórica foi realizada, utilizando a norma N-2683 (2008) da PETROBRAS, NBR-8800 (2010) e EUROCODE 3(2010) para verificar se o aço ASTM A-36 é adequado para fabricação das chapas e pinos do mecanismo. Verificou-se que a seleção do aço ASTM A-36 não foi adequada, sendo necessária a utilização de outro material com melhores propriedades mecânicas.

Palavras-chave: Projeto Mecânico, Tração, Método dos elementos finitos, Normas técnicas.

1. INTRODUÇÃO

A engenharia e o ensino na engenharia têm evoluído com os anos, à medida que novas ferramentas e tecnologias surgem no mercado, aparecendo novas práticas utilizadas pelos profissionais de engenharia, fazendo com que o ensino se atualize com essas novas ferramentas e tecnologias. Uma ferramenta muito utilizada e conhecida na engenharia, são os *softwares* CAD (*Computer-Aided Design*) e CAE (*Computer-Aided Engineering*). Os *softwares* CAD permitem desenhar produtos rapidamente, realizar montagens e verificar interferências e ajustes nos componentes antes mesmo de serem fabricados, dando diagramas detalhados dos materiais utilizados no processo, facilitando assim o processo de manufatura do produto. Aliado aos

Joinville/SC – 26 à 29 de Setembro de 2017 UDESC/UNISOCIESC

"Inovação no Ensino/Aprendizagem em Engenharia"

softwares CAD, estão os *softwares* de CAE, que auxiliam nas tarefas de análise de engenharia utilizam das peças desenhas pelo CAD para gerarem análises de FEA (*Finite Element Analysis*), CFD (*Computacional Fluid Dynamics*), MBD (*Multi-Body Dynamics*) e otimização (NORTON, 2013). Com essas simulações é possível saber qual material, geometria e montagens são mais adequadas a um determinado caso.

Este trabalho tem por objetivo fazer a verificação do dimensionamento preliminar de um suporte para célula de carga com capacidade para 150 tf utilizada em uma máquina de ensaio de fadiga para cabos de aço. A "Figura 1", desenho 2D em CAD, mostra o suporte de fixação da célula de carga e demais acessórios. O material selecionado inicialmente para o suporte foi o aço ASTM A-36 por questões de custo e de fácil disponibilidade no mercado.

Figura 1 – Mecanismo composto de soquetes e olhais para fixar a célula de carga e o cabo de aço.

Com o carregamento, geometria e material estabelecidos, então foram efetuados os cálculos teóricos conforme normas de projeto e uma a análise numérica a fim de verificação do projeto do suporte. As chapas do suporte foram verificadas com base nas normas N-2683 (Olhal de içamento, 2010), a norma NBR-8800 (projetos de estrutura de aço, 2008). Além disso, a norma EUROCODE 3 (2010) e a NBR-8800 (2008) foram utilizados para dimensionar os pinos que estão em contato com as chapas do suporte e célula de carga.

Inicialmente foi feito o modelo 3D do suporte no SOLIDWORKS (versão do estudante), conforme "Figura 2 (a)" e suas dimensões são mostradas na "Figura 2 (b)", para em seguida, realizar a verificação do componente utilizando o *software* ANSYS (versão do estudante) com a ferramenta *Static Structural*.

Figura 2 - (a) Modelo 3D com as chapas e pinos, sem as manilhas e cabos. (b) Dimensões dos pinos e chapa.

2. CÁLCULOS PARA AS CHAPAS SEGUNDO A NORMA N-2683 E NBR-8800

Pela norma N-2683 (2010) o olhal é dimensionado com anéis de reforço, para ajudar no contato com o pino e reduzir o cisalhamento do mesmo. Como as chapas suportes não possuem anéis de reforço, então não foram consideradas nos cálculos.

A força do pino que gera a reação no olhal é calculada utilizando fatores de consideração aplicados pela norma N-2683 (2010), em diferentes condições de ambiente e de trabalho. Porém, muitos desses fatores foram desprezados, pois o equipamento está em ambiente abrigado e controlado. Sendo assim, apenas o fator de consequência (f_c) de 1,30 é considerado no cálculo, pois leva em consideração a imprecisão da carga, os efeitos dinâmicos locais e possíveis consequências de falhas no olhal.

A força aplicada pelo cabo no ensaio é de 150 tf (1471 kN), mas conforme mostra a "Figura 3" a força é dividida entre as chapas. Sendo assim, a força atuando em cada chapa é a metade da força aplicada pelo cabo, caracterizando assim a condição de cisalhamento duplo no pino (Gere, 2003).

Figura 3 - Cisalhamento duplo aplicado no pino de

a) Cisalhamento duplo no Pino de diâmetro 136mm b) Cisalhamento duplo no Pino de diâmetro 110mm

A norma N-2683 (2010) também estabelece o dimensionamento do olhal, indicando como calcular o diâmetro do furo, espessura da chapa e diâmetro do anel de reforço. Porém, como as dimensões das chapas suportes já haviam sido estabelecidas, foram feitas as seguintes verificações previstas na referida norma: tensão de contato entre pino e o furo, o cisalhamento

Organização UNIVERSIDADE DO ESTADO DE SANTA CATARINA

"Inovação no Ensino/Aprendizagem em Engenharia"

da área efetiva, a tração na área líquida efetiva na região do furo e o escoamento da seção bruta na região logo abaixo do anel de reforço.

Nas tabelas presentes no trabalho apareceram as propriedades mecânicas do material, como, tensão de escoamento do material (f_y) , no qual se a tensão aplicada é igual ou maior que a tensão de escoamento o material terá deformações permanentes e a tensão de ruptura do material (f_u) , que é a tensão máxima que o material resiste sob tração, na qual, quando atingida e mantida ocorre a fratura do material (CALLISTER, 2016).

Com as verificações foi possível observar que o aço ASTM A-36 falha em duas de quatro condições, sendo a de cisalhamento e tração na região do furo conforme a "Tabela 1".

Aço ASTM A-36 $F_y = 250 MPa$					
$f_p = \frac{F_{pino}}{d_{pino} \cdot (t_{olhal} + 2 \cdot t_{anel})} = 176,41 MPa$	≤	$0,9f_y = 225 MPA$	Ok		
$ \begin{cases} f_v \\ = \frac{F_{pino}}{2 \cdot \left[(R - r_{furo}) \cdot t_{olhal} + (r_{anel} - r_{furo}) \cdot 2 \cdot t_{anel} \right] \\ = 147,18 MPa \end{cases} $	≤	$0,4f_y = 100 \text{ MPa}$	Falhou		
$f_{at} = \frac{F_{pino}}{2 \cdot b_1 \cdot t_{olhal} + 4 \cdot b_2 t_{anel}} = 147,18 MPa$	≤	$0,45 f_y = 112,5$ MPa	Falhou		
$f_a = \frac{F_{pino}}{b_3. t_{olhal}} = 79,97 MPa$	≤	$0,6f_y = 150 \text{ MPa}$	Ok		

Tabela 1 - Resultado	das verificações	com base na norma	a N-2683 ((2010)
----------------------	------------------	-------------------	------------	--------

Diferente da N-2683 (2010) que trata de movimentação de cargas gerando um fator de segurança maior, devido a fatores dinâmicos e outros vários fatores de ambiente e condições de trabalho, a norma NBR-8800 (2008) trata de estruturas de aço e mista de aço e concreto, tendo fatores de segurança menor, devido à estrutura estática sofrer efeitos dinâmicos reduzidos. Por isso, foi considerado o projeto destes componentes conforme a referida norma, devido ao sistema de ligação está submetido a condições estáticas durante os testes.

A NBR-8800 (2008) traz uma seção de barras ligadas por pino, nessa seção são estabelecidas quatro verificações para a chapa como a N-2683 (2010). Essas verificações são: escoamento da seção bruta por tração, resistência à pressão de contato na área projetada do pino, ruptura da seção líquida por tração e ruptura da seção líquida por cisalhamento, os resultados são apresentados na "Tabela 2" abaixo.

Tabela 2 - Resultado das verificações com base na norma NBR-8800 (2008)

Aço ASTM A-36 $f_y = 250$ MPa, $f_u = 400$ MPa					
N _{t,Rd}	\geq	N _{s,Rd}			
Escoamento por tração $\frac{A_g f_y}{\gamma_{a1}} = 3463,64 \ kN$	N	735,5 kN	Ok		
Pressão de contato $\frac{1,80Af_y}{\gamma_{a2}} = 2319,86 \ kN$	≥	735,5 kN	Ok		

Organização

Joinville/SC – 26 à 29 de Setembro de 2017 UDESC/UNISOCIESC

"Inovação no Ensino/Aprendizagem em Engenharia"

Ruptura por tração $\frac{2tb_{ef}f_u}{\gamma_{a2}} = 3540,2 \ kN$	≥	735,5 kN	Ok
Ruptura por cisalhamento $\frac{0.60A_{sf}f_u}{\gamma_{a2}} = 2700.31 kN$	\geq	735,5 kN	Ok

Como pode ser visto na "Tabela 2" o aço ASTM A-36 resiste aos esforços aplicados a ele, mesmo se fosse aplicado a força direta de 1471 kN, a chapa resistiria. Em comparação entre normas, a N-2683 (2010) reprova o A-36 em duas verificações e enquanto a NBR-8800 aprova o material para os esforços aplicado.

3. CÁLCULOS PARA OS PINOS SEGUNDO A NBR-8800 E EUROCODE 3

Os cálculos dos pinos serão feitos em cima do pino de maior diâmetro (136 mm) que está submetido à carga diretamente e é o que apresenta menor área de contato. Segundo a NBR-8800 (2008) e a EUROCODE 3 (2010), é necessário fazer três verificações para os pinos satisfazerem os critérios de falha.

A primeira verificação é a resistência ao cisalhamento, pela EUROCODE 3 (2010) é utilizado o limite de ruptura, no caso da NBR-8800 (2008) é utilizado o limite de escoamento. Além do cisalhamento as duas normas fazem uma verificação para o momento fletor do pino. Os momentos fletores em um pino devem ser calculados como indica a "Figura 4":

Pela EUROCODE 3 (2010) a resistência ao momento fletor é calculado com o pino fixo ou removível. Segundo a NRB-8800 (2008) não se tem distinção se o pino é fixo ou removível, tendo então somente uma equação para a resistência de momento fletor. A terceira verificação é a resistência ao esmagamento do pino, segundo a EUROCODE 3 (2010) há duas resistências uma para pino fixo e outra para removível. Da mesma forma, para a NBR-8800 (2008) também não há distinção se o pino é removível ou fixo. A "Tabela 3" mostra as verificações obtidas pela análise da NBR-8800 (2008), tendo sucesso em todas as verificações.

"Inovação no Ensino/Aprendizagem en Engenharia"

Tabela 3 - Verifica	ções do pino	de diâmetro 13	36mm pela NBR-8	8800 (2008).
---------------------	--------------	----------------	-----------------	--------------

NBR-8800 Pino 136mm			
$F_{v,Rd} = \frac{0,60A_w f_y}{\gamma_{a1}} = 3672 \ kN$	N	$F_{v,Ed} = 1471 \ kN$	Ok
$M_{Rd} = \frac{1,20Wf_y}{\gamma_{a1}} = 67351,18 kN$	\geq	$M_{Ed} = 54390,23 \ kN$	Ok
$F_{b,Rd} = \frac{1,50.t.d.f_y}{\gamma_{a1}} = 2355,3kN$	≥	$F_{b,Ed} = 1107,77 \ kN$	Ok

Na "Tabela 4" é mostrado as verificações realizadas pela EUROCODE 3 (2010), tanto para o pino fixo quanto o pino removível.

racea r vermeações de pine de diamente recimin pela Ecito CODE 5 (2010).				
EUROCODE 3 Pino 136mm				
$F_{V,Rd} = \frac{0.60Af_u}{\gamma_{M2}} = 6336 kN$	≥	$F_{v,Ed} = 1471 \ kN$	Ok	
$M_{Rd} = \frac{1,50Wf_y}{\gamma_{M0}} = 92607,87 kN$	≥	$M_{Ed} = 54390,23 \ kN$	Ok	
$F_{b,Rd} = \frac{1,50.t.d.f_y}{\gamma_{M0}} = 2590,8kN$	≥	$F_{b,Ed} = 1107,77 \ kN$	Ok	
$M_{Rd} = \frac{0,80W f_y}{\gamma_{M6,ser}} = 37043,15 \ kN$	≥	$M_{Ed} = 54390,23 \ kN$	Falhou (removível)	
$F_{b,Rd} = \frac{0,60.t.d.f_y}{\gamma_{M6,ser}} = 1036,3kN$	≥	$F_{b,Ed} = 1107,77 \ kN$	Falhou (removível)	

Tabela 4 - Verificações do	pino de diâmetro 1	36mm pela EUROCODE	3 (2010).
----------------------------	--------------------	--------------------	-----------

Observa-se então que o pino considerável removível falha nos critérios de momento fletor e pressão de contato, enquanto o pino fixo resiste a todos os esforços aplicados a ele.

4. SIMULAÇÃO NO ANSYS

Após a realização dos cálculos analíticos, conforme normas de projeto, uma simulação via elementos finitos foi realizada no ANSYS Workbench (versão de estudante) com a ferramenta *Static Structural*, a partir do modelo do conjunto (chapas suporte, pinos e célula de carga) previamente desenhado no SOLIDWORKS (versão de estudante). Na "Figura 5 (a)" é mostrado a malha do modelo utilizada na simulação, na "Figura 5 (b)" é mostrado os parâmetros utilizados para obter a malhar, junto como o total de 57516 nós e 10845 elementos.

Deve-se ressaltar na análise numérica os pontos de singularidade, que no caso do modelo apareceram nas chapas 1 e 2 ("Figura 6") aonde o mecanismo é fixo, e em alguns pontos das outras chapas, conforme mostrado na "Figura 8". Nesses pontos a tensão não é a real, gerando discordâncias com os pontos próximos a eles, mas pelo princípio de Saint-Venant, os efeitos de uma descontinuidade local de tensão em um corpo não afetam a distribuição de tensão em torno deste ponto (SILVA *et* al, 2017). Sendo assim, pode-se desconsiderar esses pontos e os seus

efeitos gerados no pino fixo, consequentemente os demais pinos não estão sob influência das singularidades das chapas 1 e 2. A "Figura 6" mostra as condições de contorno aplicadas no conjunto mecânico, em que sobre o pino 'B' é aplicado o carregamento e o pino 'A' é mantido fixo.

Figura 5 – (a) Malha Utilizada na simulação do suporte. (b) Parâmetros da malha com 57516 nós e 10845 elementos.

Figura 6 – Indicação das condições de contorno e locais onde ocorrem singularidades na simulação.

A "Figura 7" mostra a distribuição de tensões de Von Mises no mecanismo. Vale enfatizar que o ponto máximo de tensão foi desconsiderado por se tratar de uma singularidade, conforme explicado acima. Para o pino de 136 mm de diâmetro se tem uma tensão máxima de 215 MPa, estando, assim, abaixo do limite de escoamento do ASTM A-36, no caso 250 MPa, e analisando os resultados teóricos tanto na NBR-8800 (2008) e na EUROCODE 3 (2010) o pino resiste, sendo que na EUROCODE 3 (2010) tem-se uma ressalva sobre o pino ser removível o que levaria o seu colapso.

Considerando os dois pinos mais próximos (lado esquerdo da "Figura 7") da força exercida, verifica-se que o pino de menor diâmetro, que conecta a célula de carga, é menos solicitado que aquele que tem a força aplicada exatamente sobre ele. Isso ocorre devido à chapa que faz a ligação deste suporte com o cabo de aço ter espessura de 76,2 mm (Ver "Figura 1"), proporcionando assim uma menor área de contato e, consequentemente gerando um cisalhamento maior no pino onde a força está atuando. As tensões nas chapas chegam a valores de 85 MPa, que são valores relativamente baixos se comparados com os valores teóricos. Além disso, se for aplicado fatores de concentração de tensão, valores de tensão chegam a 224 MPa. Dessa forma, a carga total considerada no cálculo teórico é discrepante com aquela apresentada na simulação numérica.

A "Figura 9" mostra a distribuição de tensão de cisalhamento máxima no conjunto. Observa-se que o pino no qual está aplicada a carga apresenta uma tensão máxima de

cisalhamento de 118 MPa, valor este condizente com os aqueles calculados anteriormente conforme as normas de projeto. Além disso, nas chapas a tensão de cisalhamento chega a 130 MPa, que está acima da tensão admissível de 100 MPa para este material estabelecido pela norma N-2683 (2010). Por outro lado, pela norma NBR-8800 (2008) o material resiste, já que as duas normas consideram valores diferentes para as tensões admissíveis, sendo $0,4f_y \in 0,6f_u$, respectivamente.

6. CONSIDERAÇÕES FINAIS

O objetivo deste trabalho foi verificar o projeto mecânico de um dispositivo utilizado em uma máquina de ensaio de fadiga utilizando normas de projeto e análise numérica por meio do método de elementos finitos. Foram consideradas dimensões, pré-estabelecidas no projeto, e o aço ASTM A-36 a fim de verificar se o componente resistia a carga de tração de 150 tf. Os resultados mostraram que pela norma N-2683 (2010) o componente fabricado com o aço ASTM A-36 não suporta os esforços aplicados, porém a NBR-8800 (2008) considera o projeto adequado. Por outro lado, os resultados da simulação numérica mostraram que as tensões de cisalhamento atingem os critérios de falha da N-2683(2010) chegando a 130 MPa. Nos pinos, as tensões atingem, alguns pontos, valores próximos do limite de escoamento de 250 MPa do material. Devido os valores próximos e os possíveis ciclos de testes gerando fadiga nos pinos, esse material não é adequado ao mecanismo, podendo gerar deformação plástica e alterar os dados dos ensaios de tração. Sendo assim, é sugerido selecionar outro material mais resistente como, por exemplo, o ASTM A-572 Gr 50 que possui limite de escoamento de 345 MPa, tendo uma folga bastante favorável, podendo assim resistir aos esforços aplicados com uma margem de segurança.

7. REFERÊNCIA

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBE-8800**: Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios. Rio de Janeiro, 2008.

CALLISTER, Willian. D. Ciência e engenharia dos materiais: Uma introdução. 9. ed. Rio de Janeiro: LTC, 2016.

GERE, James. M. Mecânica dos Materiais. São Paulo: Pioneira Thomson Learning, 2003. NORMA PORTUGUESA. **EUROCODE 3**: Projecto de estruturas de aço, Parte 1-8: Projecto de ligações. Caparica Portugal, 2010.

NORTON, Robert. L. Projeto de máquinas: Uma abordagem integrada. 4. ed. Porto Alegre: Bookman, 2013. 1055p.

PETROBRAS. Norma Petrobras N-2683. Revisão B. Estruturas Oceânicas – Olhal de Içamento – Dimensionamento. Rio de Janeiro, Petrobras, 2010.

SILVA, Fernando. A; SANTOS, Jefferson. R. M; CHAVES, Carlos, A. Explicação do princípio de Saint-Venant utilizando o método dos elementos finitos. Revista UNIABEU, Rio de Janeiro, v.10, n.24. p. 158-170, 2017.

VALENCIANI, Vitor C; UNIVERSIDADE DE SÃO PAULO, Escola de Engenharia de São Carlos. Ligações em Estruturas de Aço, 1997. 289-297p, il. Dissertação (Mestrado).

YOUNG, Warren C; BUDYNAS, Richard G; Roark's Formulas for Stress and Strain. 7. ed. McGraw-Hill: New York, 2002. 703-785p.

NUMERICAL ANALYSIS OF A LOAD CELL SUPPORT UNDER TENSILE

Abstract: The main goal of this study is to verify the design of a load cell support used in a fatigue test machine for steel wire rope under tensile force of 150 tf. In addition, this study aims to contribute to the teaching of Engineering, since it deals with a real project that allows the student to use CAD/ CAE tools and apply the learning and knowledge obtained during the Mechanical Engineering course. As the mechanism is very robust, an analysis was performed initially considering ASTM A-36 steel in order to verify if the component would strength to the load condition imposed, reducing the component manufacturing cost. Initially, a 3D model was generated in the SOLIDWORKS based on preliminary 2D CAD drawing and a numerical simulation was performed in the ANSYS using the Finite Element Method. For the numerical validation, a theoretical analysis was performed, using the standard N-2683 (2008), NBR-8800 (2010) and EUROCODE 3 (2010) to verify if the material ASTM A-36 is suitable for manufacturing the plates and pins. It was verified that the selection of the ASTM A-36 steel was not suitable for this purpose, being indicated the use of another material with better mechanical properties.

Key-words: Mechanical Design, Tensile strength, Finite element method, Design code.

