
DESENVOLVIMENTO DE UMA INTERFACE GRÁFICA PARA SUPORTE
AO ENSINO DE FLUXO DE POTÊNCIA – POWER GRID DESIGN

DOI: 10.37702/2175-957X.COBENGE.2025.6416

Autores: STHEFANO SOARES SCHIAVON,GUSTAVO ALVES,JOSé UBIRAJARA NúñEZ DE NUNES

Resumo: A modelagem e análise de sistemas de potência são temas recorrentes na graduação em
Engenharia Elétrica. O fluxo de potência, essencial para análise em regime permanente, permite
determinar tensões nas barras e fluxos de potência ativa e reativa nas linhas. Seu domínio é crucial
em aplicações como planejamento, expansão e estabilidade. Embora existam simuladores disponíveis
no mercado, muitos possuem interfaces pouco didáticas para iniciantes. Para suprir essa limitação,
este trabalho propõe o Power Grid Design, uma ferramenta didática desenvolvida em Python,
gratuita e baseada no método de Newton-Raphson. Com interface gráfica intuitiva e saídas
tabulares, facilita a inserção de dados e a interpretação dos resultados. O desenvolvimento do
software em sala de aula promove a construção do conhecimento por meio da aplicação prática,
alinhando-se à metodologia de aprendizagem baseada em projetos.

Palavras-chave: Fluxo de potência,Método de Newton-Raphson,Aprendizagem baseada em projetos

DESENVOLVIMENTO DE UMA INTERFACE GRÁFICA PARA SUPORTE AO

ENSINO DE FLUXO DE POTÊNCIA – POWER GRID DESIGN

1 INTRODUÇÃO

 A modelagem e análise de sistemas elétricos de potência (SEP) são tópicos recorrentes
nas disciplinas de graduação em engenharia elétrica. Dentro desse contexto, destaca-se o
fluxo de potência como uma ferramenta fundamental para análise de sistemas elétricos em
regime permanente. Através dela, é possível determinar as tensões complexas em todas as
barras de um sistema, representando o estado da rede, e a distribuição dos fluxos de
potências ativa e reativa em seus circuitos.

O cálculo do fluxo de potência envolve a solução de equações não-lineares por meio
de métodos iterativos, dentre os quais, destaca-se o método de Newton-Raphson. Este
método, associado a técnicas de decomposição matricial para sistemas de equações
algébricas lineares, é amplamente aceito na literatura para a solução do fluxo de potência em
sistemas de grande porte (MONTICELLI, 1983).

Dentre os programas computacionais dedicados a análise de sistemas de potência,
destaca-se o ANAREDE como um software voltado para análises de fluxo de potência e
análises de contingência (ELETROBRÁS, 2025). O programa possui versão estudantil, mas a
sua entrada de dados manualmente é trabalhosa e a definição dos parâmetros de simulação
bem como a conversão dos resultados numéricos em gráficos não são tarefas simples.

Outro software amplamente reconhecido pela comunidade científica é o MATPOWER,
em código aberto e desenvolvido em MATLAB, é eficiente para simulações e otimizações de
sistema de potência. Porém, a sua interface baseada apenas em matrizes dificulta a interação
e a interpretação dos resultados (ZIMMERMAN; MURILLO-SANCHEZ; THOMAS, 2011).

Diante das limitações dos simuladores tradicionais no ensino, neste trabalho é
apresentado o Power Grid Design (PGD), uma ferramenta didática para análise de fluxo de
potência baseada no método de Newton-Raphson e desenvolvida em linguagem Python
(THURNER et al., 2018). Gratuita e com licença GNU GPL1, a ferramenta possui interface
gráfica intuitiva com diagrama unifilar e tabelas interativas. Os dados de entrada são validados
e atualizados em tempo real. O software foi validado por meio de um estudo comparativo com
o ANAREDE, usando o sistema IEEE de 14 barras (UNIVERSITY OF WASHINGTON, 1993),
comprovando sua precisão e potencial como ferramenta educacional.

A proposta de desenvolvimento do software PGD foi apresentada como um desafio aos
alunos do sétimo semestre do curso de Engenharia Elétrica, cursando a disciplina de Sistemas
de Energia. Ela coloca o aluno como protagonista, estimulando a aplicação prática de
conceitos trabalhados na disciplina através da implementação de um software voltado para
análise de fluxo de potência, promovendo autonomia e pensamento crítico (OLIVEIRA;
SANTOS, 2019). Deste modo, atende-se os requisitos da aprendizagem baseada em projetos,
utilizando-se um tempo compatível com a carga horária de um curso generalista de
Engenharia Elétrica.

1 GNU GPL significa GNU General Public License (Licença Pública Geral GNU). É uma licença de software livre
criada pela Free Software Foundation (FSF), inicialmente escrita por Richard Stallman para o projeto GNU.

2 O SOFTWARE PGD

O software PGD foi desenvolvido em Python, com a ajuda da biblioteca gráfica PySide6,
para oferecer suporte aos principais sistemas operacionais da atualidade. Assim, qualquer
usuário com o ambiente de desenvolvimento configurado consegue fazer alterações e/ou
executar o programa. A sua solução baseada no método de Newton-Raphson, anteriormente
descrito, pode ser facilmente atualizada ou substituída por outro método de solução.

Na Figura 1 é apresentado um fluxograma que ilustra as principais funcionalidades do
software PGD. O processo se inicia com a abertura do programa. Em seguida, o usuário pode
inserir ou modificar os dados da rede elétrica por meio das Interfaces Gráfica e Tabulares,
que são os ambientes interativos do software. Alternativamente, o usuário pode importar
dados a partir de arquivos “.json” contendo dados do programa ou, a partir de arquivos “.txt”
com tabelas IEEE, além de exportar dados para arquivos “.json”. Essa funcionalidade
proporciona uma maneira simples e eficiente de inserir, visualizar, importar e exportar dados,
sendo o principal diferencial do programa. Por meio dessas interfaces os dados são
encaminhados ao módulo de Solução do Fluxo de Potência, que executa o programa
retornando à solução na saída. A seguir, os dados de saída (tensões nas barras) são
atualizados na janela de interface tabular de barras do sistema e o processo é finalizado.

Figura 1 - Principais funcionalidades disponíveis

Início

Interfaces Gráfica

e Tabulares

Solução do Fluxo

de Potência

3) encaminha os dados para

execução do programa

4) atualiza dados da solução nas

janelas de interface tabular

Fim

1) ação do

usuário

2) importa dados

(opcional)

(.json)

5) exporta dados

(opcional)

2) importa dados

(opcional)

Dados do

programa

(.txt)

Tabela

IEEE

Fonte: Os autores.

 Embora o projeto seja uma base de código única, há uma abstração entre quem é
responsável pelos dados e quem é responsável pela solução matemática. Como pode ser
visto na Figura 1, a interface gráfica lida com toda a entrada e saída de dados, seja
importação/exportação de arquivos ou interações feitas pelo usuário, através de janelas de
interface gráfica e tabulares. Quando o usuário executa o fluxo de potência, as informações
atuais do programa são encaminhadas à rotina que é responsável pela solução numérica.
Após a conclusão, a interface gráfica é atualizada com os dados da resposta.

2.1 Interfaces Gráfica e Tabulares

Na Figura 2 é apresentada a interface gráfica do software PGD, tomando como exemplo
o sistema de três barras apresentado em Saadat (1999). Ela permite que o usuário insira
primeiramente as barras do sistema e, em seguida, insira as linhas de transmissão, clicando-
se com o mouse em uma barra e arrastando até a outra. Cada vez que é inserido um novo
componente (barra ou linha), uma janela correspondente é atualizada com um campo para
preenchimento dos dados do componente. As janelas com os dados das barras e com os
dados das linhas para o sistema exemplo de três barras são mostradas nas Figuras 4 e 5,
respectivamente. Como pode ser visto na Figura 3, a janela tabular das barras possui como
especificações o nome, o número, o tipo, a magnitude da tensão, o ângulo da tensão, a
potência ativa e a potência reativa de cada barra. Na Figura 4 é mostrada a janela tabular das
linhas, que apresenta como especificações a barra de origem, a barra final, a resistência, a
reatância indutiva, a condutância e a susceptância shunt.

Sempre que for modificado o texto de algum campo de entrada e o usuário clicar fora
do mesmo, o programa atualizará os dados do componente. Em seguida, o valor atual é
verificado. Se ele for validado, o programa atualiza cada elemento da interface em que o
próprio é exibido. Caso contrário, o texto volta para o estado em que estava
anteriormente. Mudanças válidas nos campos das janelas atualizam o diagrama unifilar em
tempo real. Isso ocorre sempre que um campo de texto é editado e perde o foco do mouse.
Essa escolha de design torna dispensável o uso de botões para salvar. Conforme descrito
anteriormente, dados inválidos são desprezados, fazendo com que o campo volte para seu
valor anterior.

Alterações no diagrama unifilar também refletem nas janelas de dados, embora a única
ação possível seja a de criar uma linha de transmissão entre barramentos. Sempre que o
usuário arrasta de um barramento para o outro, um segmento de reta (representando a linha
de transmissão) é desenhado na interface e uma entrada é inserida na tabela de linhas de
transmissão.

Figura 2 - Janela de interface gráfica do programa com o sistema-
exemplo de três barras.

Fonte: Os autores.

Figura 3 - Janela de interface tabular com os dados de barras para o sistema-
exemplo de três barras.

Fonte: Os autores.

Figura 4 - Janela de interface tabular com os dados de linhas para o sistema-
exemplo de três barras.

Fonte: Os autores.

Em suma, para a modelagem de um sistema e execução do fluxo de potência no
software PGD deve-se executar as etapas a seguir:

1) adicionar todos os barramentos (botão Add Bus);
2) criar as conexões entre os barramentos (botão vermelho no barramento do canvas);
3) modificar dados dos barramentos na tabela (botão Buses);
4) modificar dados das linhas de transmissão (botão Lines);

executar o fluxo de potência (botão Run Power Flow).

2.2 Arquitetura

O programa foi desenvolvido pensando em facilitar a compreensão do fluxo de potência
de uma rede elétrica. Por isso, é fundamental validar os dados de entrada e garantir que as
alterações feitas pelo usuário sejam refletidas em tempo real. Softwares que reagem às
variações do usuário são chamados de reativos. Essa reatividade se dá pelo sistema de
observabilidade dos elementos do circuito, modelados a partir de elementos do tipo Bus e Line
derivados de NetworkElement.

Para montar a estrutura do software, foi adotado o padrão de projeto Model-View-
Controller (MVC), que decompõe toda estrutura do software em três camadas principais:
Model, responsável pela lógica de dados; Views, encarregada da interface com o usuário; e
Controller, na qual são definidas as regras de funcionamento do sistema, atuando como
intermediário entre Model e View. Essa divisão de responsabilidades facilita a manutenção e
a ampliação de funcionalidades, além de promover maior modularidade e reutilização de
código.

2.3 Experiência do usuário

Todos os aspectos da estrutura do software foram definidos com o objetivo de garantir
fluidez e consistência durante a sua utilização. Nesse sentido, o sistema foi projetado para
refletir imediatamente na interface qualquer modificação realizada pelo usuário, reduzindo o
número de interações necessárias para produzir um efeito desejado. Esse comportamento
está alinhado com a heurística de usabilidade proposta por Nielsen e Molich (1990), que
recomenda fornecer feedback imediato como forma de manter o usuário informado sobre o
estado do sistema. Além disso, a consistência na interação e a previsibilidade das respostas
fortalecem a sensação de controle e confiança, conforme apontado pelos autores em sua
avaliação heurística de interfaces. O modelo adotado evita que o usuário se sinta inseguro
quanto à realização de etapas ou comandos, promovendo uma experiência mais eficiente e
confiável.

2.4 Modelagem dos Elementos do Sistema

A classe NetworkElement é uma abstração dos elementos básicos do sistema, sendo
estendida pelas classes Bus e Line, que representam, respectivamente, os modelos de
barramento e linha de transmissão. Essa classe base define propriedades comuns a todos os
elementos, como id e name. As classes derivadas Bus e Line herdam essas características e
adicionam propriedades específicas de cada tipo de componente. Com isso, aspectos
estruturais do funcionamento básico ficam abstraídos na superclasse, o que facilita a
modelagem individual de cada elemento do sistema.

2.5 Controlador

Ao serem criados, os componentes são armazenados em um controlador central
denominado SimulatorController, responsável por garantir a unicidade dos elementos no
sistema. Essa unicidade é assegurada por meio do uso de dicionários – estruturas de dados
compostas por pares chave – valor, nas quais a chave é o identificador único (id) e o valor é
o próprio objeto instanciado. Cada elemento é considerado único e imutável, sendo substituído
por uma nova instância sempre que houver alguma alteração.

A escolha pela imutabilidade dos elementos visa garantir a segurança e a integridade
dos dados. Com esse modelo, qualquer modificação realizada por meio da interface gráfica
só pode ser aplicada por intermédio do SimulatorController. Dessa forma, todas as alterações
ficam centralizadas em um único ponto do sistema, assegurando que tanto os modelos
matemáticos quanto os elementos da interface gráfica sejam atualizados pelo mesmo agente
e em resposta ao mesmo evento.

Após a substituição do elemento no dicionário, o controlador percorre a lista de
observadores em busca daqueles interessados no elemento alterado. Em seguida, os
observadores correspondentes se encarregam de atualizar os modelos internos e os
componentes visuais vinculados ao elemento, independentemente da sua localização na
interface.

3 ESTUDOS DE CASO E RESULTADOS

 A validação do software PGD foi realizada mediante um estudo comparativo com o
ANAREDE, utilizando o sistema IEEE de 14 barras (UNIVERSITY OF WASHINGTON, 1993).
O sistema consiste de 5 geradores, 11 barras de carga, 20 linhas de transmissão, além de
transformadores de tap ajustável em algumas seções de linha. A barra 1 é a barra de folga do
sistema, enquanto as barras 2, 3, 6 e 8 são barras de geração. As demais barras do sistema
são consideradas como barras de carga.

Na Figura 5 é mostrada a janela de interface gráfica do PGD para o sistema IEEE de
14 barras. A partir dela, é possível observar que as barras de carga (PQ), as barras de geração
(P|V|) e a barra de folga (|V|θ) são mostradas na interface, enquanto as suas informações e
as informações referentes as linhas de transmissão são ocultadas. Os dados de entrada do
sistema podem ser inseridos nas janelas de interface tabulares de barras e de linhas do
programa, como descrito anteriormente. O programa permite também a importação desses
dados do arquivo padrão IEEE usando a função “Import IEEE”, desenvolvida no programa. Na
inicialização do programa é assumido que as magnitudes das tensões são iguais a 1 pu e os
ângulos das tensões são iguais a zero para as barras em que essas grandezas sejam as
incógnitas.

Figura 5 - Janela de interface de barras para o sistema IEEE de 14 barras.

Fonte: Os autores.

 Os resultados obtidos na estimação da magnitude das tensões (em pu) e dos ângulos
(em radianos) foram analisados através do erro percentual absoluto médio relativo, descrito
pela seguinte equação:

  200 %est ref

est ref

v v
Erro

v v

−
= 

+

(1)

sendo

vest o valor estimado usando software PGD; e
vref o valor de referência obtido com o ANAREDE.

Na Tabela 1 são apresentados os valores estimados e de referência para as
magnitudes das tensões nas barras de carga e para os ângulos das tensões nas barras de
carga e de geração, bem como os valores dos erros correspondentes na estimação de cada
grandeza. Os valores vest são extraídos da janela de interface tabular de barras, após a
execução do fluxo de potência para o sistema IEEE de 14 barras.

Com base nos resultados obtidos na Tabela 1 é possível observar que a média dos
erros de estimação ficam em torno de 0,13% e o seu desvio padrão é de aproximadamente
0,11%, indicando a robustez numérica do software PGD.

Tabela 1 - Comparação entre resultado e referência.

Incógnita vref vest Erro [%]

θ2 -5,0000 -4,9826 0,3486

θ3 -12,7000 -12,7251 0,1974

θ4 -10,3000 -10,3129 0,1252

θ5 -8,8000 -8,7739 0,2970

θ6 -14,2000 -14,2209 0,1471

θ7 -13,4000 -13,3596 0,3019

θ8 -13,4000 -13,3596 0,3019

θ9 -14,9000 -14,9385 0,2581

θ10 -15,1000 -15,0973 0,0179

θ11 -14,8000 -14,7906 0,0635

θ12 -15,1000 -15,0756 0,1617

θ13 -15,2000 -15,1563 0,2879

θ14 -16,0000 -16,0336 0,2098

|V4| 1,0180 1,0177 0,0295

|V5| 1,0200 1,0195 0,0490

|V7| 1,0620 1,0615 0,0471

|V9| 1,0560 1,0559 0,0095

|V10| 1,0510 1,0510 0,0000

|V11| 1,0570 1,0569 0,0095

|V12| 1,0550 1,0552 0,0190

|V13| 1,0500 1,0504 0,0381

|V14| 1,0360 1,0355 0,0483

Fonte: Os autores.

4 O SOFTWARE PGD COMO AMBIENTE DE APRENDIZAGEM BASEADA EM
PROJETOS

A Aprendizagem Baseada em Projetos (ABP) é uma metodologia ativa centrada no
estudante, promovendo a aprendizagem por meio da investigação de problemas reais. Ela
estimula a autonomia, o pensamento crítico e a integração de saberes, resultando na criação
de um produto final (BELL, 2010; LARMER & MERGENDOLLER, 2010; THOMAS, 2000;
KRAJCIK & BLUMENFELD, 2006). Nesse contexto, o desenvolvimento do software PGD por
estudantes de Engenharia Elétrica, cursando a disciplina de Sistemas de Energia do sétimo
semestre, atende os seguintes requisitos da ABP, que são (KRAJCIK ; BLUMENFELD, 2006):
Questões motivadoras; Problemas e situações que exigem investigação e estudo;
Colaboração entre os participantes; Fornecimento de ferramentas para suporte da
aprendizagem; e Geração de um produto.

O software aqui apresentado poderia ser posicionado como uma ferramenta de suporte
a aprendizagem. Contudo, por ainda estar em estágio inicial de desenvolvimento, a sua
principal contribuição reside no fato de que os estudantes são desafiados a resolver um
problema real (no caso, o fluxo de potência), trabalhando de forma colaborativa para construir

soluções e um produto significativo. Para o desenvolvimento do software, é necessário que o
aluno estude:
▪ modelagem de sistemas de potência (geradores, transformadores e linhas de transmissão);
▪ cálculo de redes de potência (construção de matrizes admitância e/ou impedância de

barra);
▪ fluxo de potência (formulação básica do problema, tipos de barras e técnicas iterativas para

solução do problema); e
▪ aplicações do fluxo de potência (estudos de planejamento do sistema elétrico, de

estabilidade transitória de sistemas após contingências, entre outros).
Nesse caso, o professor atua como mediador do processo, promovendo a investigação,

a reflexão e a aplicação prática dos conhecimentos. A avaliação ocorre de forma contínua e
formativa, valorizando o processo de aprendizagem, a participação, o raciocínio crítico e a
criatividade, além do resultado final. No entanto, cabe ressaltar que o desenvolvimento do
software por si só não garante o sucesso do projeto da perspectiva educacional. É necessário
que sejam experimentados e explorados diversos sistemas de teste e, somente como base
na interpretação coerente e no entendimento dos resultados obtidos, o projeto pode ser bem
sucedido.

O estudo do fluxo de potência ocorre de forma progressiva à medida que o aluno
explora e desenvolve diferentes funcionalidades do software, em consonância com a
concepção piagetiana de aprendizagem. Segundo Piaget (2010), esse processo não se dá
por simples integração sucessiva de conceitos, mas por uma diferenciação progressiva, na
qual os conceitos vão sendo construídos e refinados com base em um objeto de estudo
concreto.

Finalmente, fica claro que a proposição de um desafio, em sala de aula, para a
resolução de um problema real da indústria pode resultar em uma ferramenta computacional
que tem como propósito não apenas o suporte ao aluno usuário, mas também, o incentivo e
o aprendizado dos alunos que trabalham como desenvolvedores.

5 CONCLUSÃO

Neste trabalho, propõe-se o desenvolvimento de uma interface gráfica intuitiva e de
fácil uso, voltada ao ensino de fluxo de potência no meio acadêmico. Por ser de código aberto,
permite que estudantes e professores analisem, modifiquem e expandam suas
funcionalidades, tanto para fins didáticos quanto para desenvolvimento. A interface facilita a
compreensão de diagramas unifilares ao permitir a visualização clara de barramentos e linhas
de transmissão, com conexões feitas diretamente pelo mouse, dispensando a inserção
manual de dados em tabelas.

O tempo de desenvolvimento do software foi compatível com a carga horária de um
curso generalista de Engenharia Elétrica. Os resultados indicam que a ferramenta oferece um
ambiente de aprendizagem baseado em projetos que é funcional, colaborativo e com bom
potencial didático, embora ainda precise ser testada com estudantes e docentes. Além disso,
o projeto contribui significativamente para o aprendizado dos alunos desenvolvedores,
evidenciado por avaliações contínuas em sala de aula.

REFERÊNCIAS

BELL, S. Project-Based Learning for the 21st Century. The Clearing House, v. 83, n. 2, p.
39–43, 2010.

ELETROBRÁS Cepel. ANAREDE - Análise de Redes Elétricas. Disponível em:
<https://www.cepel.br/produtos/anared-2/> Acesso em: 19 mai. 2025.

KRAJCIK, J. S.; BLUMENFELD, P. C. Project-based learning. In: SAWYER, R. Keith (Ed.).
The Cambridge handbook of the learning sciences. New York: Cambridge University
Press, 2006. p. 317–333.

LARMER, J.; MERGENDOLLER, J. R. Seven Essentials for Project-Based Learning.
Educational Leadership, v. 68, n. 1, p. 34–37, 2010.

MONTICELLI, J. A. Fluxo de Carga em Redes de Energia Elétrica. São Paulo: Blucher,
1983.

NIELSEN, Jakob; MOLICH, Rolf. Heuristic evaluation of user interfaces. In: SIGCHI
Conference on Human Factors in Computing Systems, 1990, Seattle. Proceedings... New
York: ACM, 1990. p. 249–256.

OLIVEIRA, M. M.; SANTOS, L. M. M. dos. Aprendizagem baseada em projetos como
estratégia ativa na formação de engenheiros. Revista Educação, Santa Maria, v. 44, n. 3,
p. 1-18, 2019.

PIAGET, Jean. Psicologia e pedagogia. 10. ed. Rio de Janeiro: Forense Universitária, 2010.

SAADAT, H. Power System Analysis. 1. ed. New York: McGraw-Hill, 1999.

THOMAS, J. W. A Review of Research on Project-Based Learning. San Rafael, CA: The
Autodesk Foundation, 2000.

THURNER, L. et al. Pandapower—An Open-Source Python Tool for Convenient Modeling,
Analysis, and Optimization of Electric Power Systems. IEEE Transactions on Power
Systems, Piscataway, v. 33, n. 6, p. 6510 – 6521, Apr. 2018.

UNIVERSITY OF WASHINGTON. IEEE 14-Bus System – Power Systems Test Case
Archive. Seattle, WA: Department of Electrical & Computer Engineering, 1993. Disponível em:
https://labs.ece.uw.edu/pstca/pf14/pg_tca14bus.htm. Acesso em: 20 maio 2025.

ZIMMERMAN, R. D.; MURILLO-SANCHEZ, C. E.; THOMAS, R. J. MATPOWER: Steady-State
Operations, Planning and Analysis Tools for Power Systems Research and Education. IEEE
Transactions on Power Systems, Piscataway, v. 26, n. 1, p. 12 – 19, Feb. 2011.

DEVELOPMENT OF A GRAPHICAL INTERFACE TO SUPPORT POWER FLOW TEACHING –
POWER GRID DESIGN

Abstract: The modeling and analysis of power systems are recurring topics in undergraduate
Electrical Engineering courses. Power flow, essential for steady-state analysis, allows
determining voltages at buses and active and reactive power flows in lines. Mastering this
knowledge is crucial for applications such as planning, expansion, and stability. Although
simulators are available on the market, many have interfaces that are not very educational for
beginners.To address this limitation, this paper proposes Power Grid Design, a free
educational tool developed in Python and based on the Newton-Raphson method. With an
intuitive graphical interface and tabular outputs, it facilitates data entry and result interpretation.
The software development in the classroom promotes knowledge development through
practical application, aligning with the project-based learning methodology.

Keywords: Power flow, Newton-Raphson method, Project-based learning.

