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Resumo: O trabalho introduz o Filtro de Kalman como uma ferramenta matemática crucial para
estimar o estado de sistemas dinâmicos em ambientes com medições imprecisas. Ele explica como o
filtro combina previsões e medições ruidosas para obter a melhor estimativa possível, ponderando a
confiança  de  ambos.  A  aplicação  histórica  no  programa  Apollo  e  seu  uso  atual  em robótica,
navegação (GPS) e visão computacional são destacados para demonstrar sua vasta importância. O
texto também simplifica o algoritmo com um exemplo prático de estimativa de massa, mostrando sua
natureza  recursiva  e  a  função  do  `Ganho  de  Kalman`  para  suavizar  as  medições.  Por  fim,  a
metodologia e os resultados esperados de um projeto de extensão universitária são apresentados,
visando desmistificar o Filtro de Kalman e disseminar seu conhecimento desde o ensino médio.
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ENTENDENDO E DISSEMINANDO O FILTRO DE KALMAN: ESTIMAÇÃO 

DO MUNDO REAL INCERTO  
 

1 INTRODUÇÃO 

 No mundo real, frequentemente nos deparamos com situações onde precisamos ter 
conhecimento o melhor possível de um "estado" ou um parâmetro físico real de um sistema – 
por exemplo, a posição de um drone, a velocidade de um carro autônomo, a inclinação de 
uma plataforma móvel, a posição e velocidade de uma poltrona de um ocupante de um veículo 
sujeito ao efeito de uma suspensão automotiva, sobre o qual está instalado, em movimento 
vertical.  No entanto, as medições que obtemos desses sistemas são quase sempre ruidosas 
ou imprecisas. Sensores podem ser afetados por interferências, condições ambientais ou 
limitações inerentes à sua tecnologia. Como podemos obter a melhor estimativa de estados 
da realidade quando nossas informações são incompletas e carregam erros e imprecisões? É 
aqui que entram os filtros, e em particular, algoritmo importantíssimo e amplamente utilizado 
chamados Filtro de Kalman (FK). Desenvolvido por Rudolf Emil Kalman em 1960, o Filtro de 
Kalman é uma ferramenta matemática que permite estimar o estado de um sistema dinâmico. 
Isso significa que o filtro calcula o valor que uma variável (o “estado”) que representa uma 
grandeza física de um sistema provavelmente assume em um determinado momento, mesmo 
que as medições disponíveis das respostas do sistema a uma sequência de entradas não 
sejam perfeitas. O FK faz isso combinando uma previsão de como o estado deve evoluir ao 
longo do tempo com as medições ruidosas recebidas, incluindo os valores reais intrínsecos. 
Ele pondera a confiança tanto na previsão quanto na medição em tempo real para chegar à 
melhor estimativa possível, (KALMAN, 1962). 
 A importância do Filtro de Kalman se reflete em sua vasta aplicabilidade em diversas 
áreas da ciência e engenharia. Historicamente, suas primeiras aplicações foram cruciais no 
setor aeroespacial, como no programa Apollo da NASA, para orientação e navegação de 
naves espaciais. Hoje, é uma técnica fundamental em robótica, ajudando robôs a mapear 
ambientes e se localizar, em sistemas de navegação como o GPS, em visão computacional, 
no processamento de sinais para extrair informações úteis de dados imperfeitos, e até mesmo 
em aplicações mais complexas como o controle de sistemas e análise de séries temporais. É 
uma ferramenta valiosa para inferência e estimação em tempo real, (KALAT,1963) 
 Para muitos estudantes, o Filtro de Kalman pode parecer um assunto complexo, 
frequentemente associado a matemática avançada como processos estocásticos, álgebra 
matricial, etc. No entanto, a ideia central por trás do algoritmo é bastante intuitiva. Embora 
seja um tópico mais aprofundado em cursos de engenharia, compreender seus princípios 
básicos é uma experiência educacional válida e pode iluminar como lidamos com a incerteza 
em sistemas dinâmicos. Algumas fontes indicam que o ensino desses conceitos relacionados 
à estimação de estados é pouco abordado em certas formações de graduação, apesar de sua 
relevância, (ALEX, 2024) 
 Neste artigo, nosso objetivo principal restringe-se em apresentar somente a idéia 
fundamental, por questão de limitação de páginas do artigo, em que se baseia o filtro de 
Kalman, de uma maneira acessível e muito intuitiva. Porém, no projeto de extensão a ser 
desenvolvido nas instituições públicas de ensino, o comparamos a suas versões mais 
simplificadas e ainda mais intuitivas, observador de Luenberger (off-line)  e os filtros α-β e α-
β-γ, focando nos conceitos fundamentais e na filosofia empregada em seus desenvolvimentos 
e funcionamentos. Buscamos desmistificar o algoritmo do filtro de Kalman e mostrar que, 
embora suas equações completas possam ser elaboradas, a essência de combinar previsões 
com medições para obter uma estimativa melhor é um conceito compreensível e de grande 



 

 

 

utilidade tecnológica num mundo incerto. Ao explorar o que o Filtro de Kalman faz e por que 
é tão útil, esperamos despertar o interesse tanto de estudantes de cursos de engenharia de 
instituições públicas, mas principalmente, de estudantes já do ensino médio, disseminando 
essa poderosa ferramenta matemática e suas aplicações no mundo real, (LUENBERGER, 
1991),  (MUTAMBARA, 1999) e (OGATA,2015). 

2   FUNDAMENTAÇÃO TEÓRICA 

         O filtro de Kalman é um coadjuvante imprescindível dos sistemas automáticos nas mais 
diversas áreas tecnológicas, que calcula a melhor estimativa sob um determinado critério, 
denominado mínimos quadrados, de uma grandeza física que está variando no tempo, mesmo 
quando as informações que ele recebe são inexatas. Imagine que você quer prever e estimar 
a posição de um carro em movimento, mas as medições que você faz para realizar esse 
processo previsão-estimação não são perfeitas por efeito ruidosos. O filtro de Kalman combina 
essas medições com um modelo do movimento do carro para dar uma estimativa mais precisa 
de onde ele realmente está. É um algoritmo que filtra o ruído e realiza previsões mais 
confiáveis, (SCHMIDT, 1985). 
 Com o intuito de passar a ideia fundamental inspiradora do filtro de Kalman, faremos o 
desenvolvimento teórico apoiado já de início na utilização de um exemplo de fácil 
entendimento e abstração, e que requer um desenvolvimento matemático relativamente 
elementar.  
 Um sistema estático é um sistema que não muda seu estado durante um período 
razoável. Por exemplo, o sistema estático poderia ser uma torre e o estado seria a sua altura.
 Neste exemplo, estimamos o peso de uma barra de ouro. As medidas não apresentam 
erro sistemático, mas incluem ruído aleatório causado por erros de leitura nas medições, por 
exemplo. 
 O sistema é a barra de ouro e o estado do sistema é a massa da barra de ouro. O 
modelo dinâmico do sistema é constante, pois assumimos que o peso não muda em curtos 
períodos, pelo menos durante a experimentação. 
 

Figura 1 – Medições x Valor Real 

 

 
Fonte: Autores 



 

 

 

 
 Para estimar o estado do sistema (ou seja, o valor do peso), podemos fazer múltiplas 
medições, conforme mostrado na Fig. 1, e calcular a média delas. 

No instante n, a estimative xˆn,n  seria a média de todas as medidas prévias: 
 

𝑥̂𝑛,𝑛 =  
1

𝑛
(𝑧1 + 𝑧2 + ⋯ +𝑧𝑛−1+𝑧𝑛) =

1

𝑛
∑ 𝑧𝑖

𝑛
𝑖=1             (1) 

Notação do Exemplo: 

x é o valor real da massa de ouro. 

zn é o valor medido do peso no instante n. 

xˆn,n é a estimativa de x no instante n (a estimative é feita depois de 

realizar a medida zn). 

xˆn+1,n é a estimativa futura (n + 1) do estado x. Em outras palavras, xˆn+1,n é 

o estado predito ou estado extrapolado. 

xˆn−1,n−1 é a estimativa de x no instante n − 1 (a estimative é realizada após 

tomada da medida zn−1). 

xˆn,n−1 é a predição a priori, realizada no instante n-1 , estimando o estado no 
instante n. 

         Na literatura, o chapéu (acento circunflexo) sobre a variável, indica um valor 
estimado. 

 
 O modelo dinâmico neste exemplo é estático (ou constante), pois o peso do ouro não 
muda com o tempo, portanto xˆn+1,n = xˆn,n. 
 Embora a Equação (1) seja matematicamente correta, não é prática para 
implementação. Para estimar xˆn,n  precisamos lembrar de todas as medições históricas. 
Portanto, precisamos de uma memória grande. Também precisamos recalcular a média 
repetidamente se quisermos atualizar o valor estimado após cada nova medição. Portanto, 
precisamos de uma Unidade Central de Processamento (CPU) mais poderosa. Seria mais 
prático manter apenas a última estimativa (xˆn−1,n−1) e atualizá-la após cada nova medição. 
A figura (2) a seguir exemplifica o algoritmo necessário: 

 
• Estime o estado atual com base na medição e na previsão anterior. 
• Prever o próximo estado com base na estimativa do estado atual usando o Modelo 
Dinâmico. 

Figura 2 – Notação do Exemplo 

 

 
Fonte: Autores 



 

 

 

  Dessa forma, a equação recursiva de atualização de estado é descrita por: 
 

    (2)  
 
 A equação (2) de atualização de estado é uma das cinco equações que 
compõem o filtro de Kalman. Ela pode ser interpretada da seguinte forma (Figura 3): 
 

Figura 3 – Interpretação diagramática da equação de atualização de estado 

 

 
Fonte: Autores 

 
 O fator 1/n é específico do nosso exemplo. Discutiremos o papel vital desse fator 
mais tarde, mas agora, gostaria de observar que na “linguagem do Filtro de Kalman”, 
esse fator é chamado de Ganho de Kalman. É denotado por Kn. O subscrito n indica 
que o ganho de Kalman pode mudar a cada iteração. 
 A descoberta de Kn foi uma das contribuições significativas de Rudolf Kalman. 
Antes de entrarmos nas entranhas do Filtro de Kalman, usamos a letra grega αn.  
               Portanto, a equação de atualização do filtro tem a forma: 
    

x̂ n,n = x̂ n,n−1 + αn (zn − x̂ n,n−1) 
 

 O termo (zn − x̂ n,n−1) é o “residual de medição”, também chamado de 

inovação. A inovação contém novas informações. 
 Neste exemplo, 1/n diminui à medida que n aumenta. No início, não temos 
informações suficientes sobre o estado atual; assim, a primeira estimativa é baseada 
na primeira medição 1 |n=1 = 1 . À medida que continuamos, cada medição sucessiva 
tem menos peso no processo de estimativa, uma vez que 1/n diminui. Em algum 
momento, a contribuição das novas medições tornar-se-á insignificante. 
 Vamos continuar com o exemplo. Antes de fazermos a primeira medição, 
podemos adivinhar (ou estimar aproximadamente) o peso da barra de ouro 
simplesmente lendo o carimbo na barra de ouro. É chamada de estimativa inicial e é a 
nossa primeira estimativa. 
 O Filtro de Kalman requer a estimativa inicial como uma predefinição, o que pode 
ser muito aproximado. 

 
 2.1          ALGORITMO DE ESTIMAÇÃO 

 
 A seguir descreveremos passo a passo o processo de estimação com um 
exemplo numérico. O diagrama descrito pela Figura 4 descreve o algoritmo de 
estimação utilizado neste exemplo. 



 

 

 

 
Figura 4 – Algoritmo de estimação  

 
 

 
 

Fonte: Autores 

Iteração 0 
 
Inicialização 
 
 Nossa suposição(chute) inicial da massa da barra de ouro é 1000g. Portanto, o 
modelo dinâmico do sistema é estático. A inicialização não é requerida nas próximas 
iterações sucessivas. 
 
Predição 
 
Fez-se a suposição de que a massa da barra de ouro não se altera. Portanto, o modelo 
dinâmico do sistema é estático. Nosso próximo passo de estimação de 
estado(predição) é igual a inicialização: 

 

1ª Iteração 
            

Passo 1 

Fez-se um medida da massa que resultou na leitura: 

z1 = 996g 
Passo 2 

Calculando o ganho. Em nosso exemplo αn = 1/n, portanto: 

 
α1 = 1 

Calculando o estado atual utilizando a equação de atualização de estado: 

 

x̂ 1 ,1  = x̂ 1 ,0  + α1 (z1 − x̂1 ,0) = 1000 + 1 (996 − 1000) = 996g 



 

 

 

A suposição inicial poderia considerar qualquer valor neste exemplo específico. Visto 
que α1 = 1, o estado atual considere o valor da suposição inicial. 

Passo 3 

Como o modelo dinâmico é estático, a predição é igual ao estado estimado atual: 

x̂ 2,1 = x̂1 ,1 = 996g 

 
2a Iteração  

 

Passado uma unidade de tempo, a estimação predita da iteração prévia torna-se a 

estimativa a-priori na iteração atual: 

x̂ 2 ,1 = 996g 

 

Passo 1 

Fazendo a segunda medida da massa: 

z2 = 994g 

 

Passo 2 

Calculando o ganho: 
α2 = 1 / 2  

Calculando a estimativa atual: 
1 

x̂ 2 ,2  = x̂ 2 ,1  + α2 (z2 − x̂ 2,1 ) = 996 + 
2 

(994 − 996) = 995g 

 

Passo 3 

x̂ 3,2 = x̂ 2,2 = 995g 

 

3a Iteração  

z3 = 1021g  
 
α3 = 1/3 
 
x̂ 3 ,3  = 995 + 1/3 (1021 − 995) = 1003.67g 

x̂ 4,3 = 1003.67g 
 

4a Iteração  
 

z4= 1000g 
α4 = 1/4 

 
x̂ 4 , 4  = 1003.67 + ¼ (1000 − 1003.67) = 1002.75g 



 

 

 

x̂ 5,4 = 1002.75g 
 

5a Iteração 
 

z5 = 1002g  

 
α5 = 1/5 

 
x̂ 5 , 5  = 1002.75 +1/5

 
(1002 − 1002.75) = 1002.6g 

x̂ 6,5 = 1002.6g 
 

6a Iteração  
 

z6 = 1010g  
 
α6 = 1/6 
 

 
x̂ 6 , 6  = 1002.6 + 1/6 

 
(1010 − 1002.6) = 1003.83 

 
x̂ 7,6 = 1003.83g 
 

7a Iteração  
 

z7 = 983g 

 
α7 = 1/7  

 
x̂ 7 ,7  = 1003.83 +1/7 

 
(983 − 1003.83) = 1000.86g 

x̂ 8,7 = 1000.86 
 

8a Iteração  
 

z8 = 971g 

 
α8 = 1/ 8  

 
x̂ 8 , 8  = 1000.86 + 1/8(971 − 1000.86) = 997.125g 

x̂9,8 = 997.125g 
 

9a Iteração  
 
z9 = 993g 

 
α9 = 1/9 

 



 

 

 

x̂ 9 , 9  = 997.125 + 1/9
 
(993 − 997.125) = 996.67g 

x̂10,9 = 996.67g 
 

10a Iteração  
 

z10 = 1023g 

 
α10 =1/10  

 
x̂10,10 = 996.67 +1/10 

 
(1023 − 996.67) = 999.3g 

x̂11,10 = 999.3g 
 Parando o processo por aqui, podemos observar que o ganho decresce com 
cada medida realizada. Portanto, a contribuição de cada medida sucessivamente 
menor do que a contribuição da medida prévia. Chegamos muito próximo do valor da 
massa verdadeiro que é 1000g.  Caso fizéssemos mais medidas, chegaríamos cada 
vez mais perto do valor verdadeiro.  
   
           2.2          ANÁLISE DOS RESULTADOS 
 
 A evolução temporal dos valores medidos, estimados e real, no processo de 
estimação pode ser visualizada graficamente na Figura 5. 
 

Figura 5 – Evolução gráfica do processo recursivo 

 
 Fonte: Autores 

 
 
 Note que o algoritmo de estimação tem um efeito suavizador (“smoothing”) sobre 
as medidas e converge para o valor real. 
 Cabe perguntar: Qual deveria ser o número de medidas ideal? Qual o critério de 
parada? Pararíamos na décima, centésima ou milésima medida? O número necessário 
de medidas depende da precisão de estimação desejada. 
 Para se ter uma idéia, como utilizamos no exemplo, uma geração das medidas 
com um desvio padrão estatístico de 20 gramas, deveríamos fazer 400 medidas para 
alcançar uma precisão de 1g nas estimativas. 

 



 

 

 

3  METODOLOGIA 

          O trabalho de disseminação nas escolas públicas, mais especificamente ao terceiro ano 
do ensino médio, bem como nos cursos técnicos, de tecnologia e engenharia de instituições 
públicas da cidade de Sinop/MT, será realizado através de um programa de extensão 
universitária oferecido pelo curso de engenharia elétrica da Unemat (Universidade Estadual 
de Mato Grosso). Nesse programa, alunos da disciplina de Controle Linear 2, oferecida no 7º 
semestre do curso, e da qual o conteúdo aqui tratado faz parte, desenvolverão sob orientação 
do professor tutor da disciplina, o suporte teórico didático de fácil compreensão e alcance, e 
a implementação prática à disseminação, fazendo uso de experimentos modulares com a 
finalidade de dar suporte as demonstrações teóricas e validações prática correspondentes. 
 A carga horária do curso de extensão será de 16 horas e a livre participação do aluno 
matriculado na disciplina de Controle Linear 2, como agente, comporá parcialmente sua nota 
na disciplina, dentro das 60 horas da carga horária programada para a disciplina no plano 
pedagógico do curso. Os experimentos modulares desenvolvidos no semestre poderão ser 
reutilizados ou inovados à constituição de novos experimentos nos semestres subsequentes. 
 

4 DISCUSSÕES E RESULTADOS ESPERADOS 

 Como já discutido anteriormente, o Filtro de Kalman é de fundamental importância em 
áreas como engenharia de controle, robótica, navegação, automação e aprendizado de 
máquina. Sua aplicação precoce na formação técnica e superior pode promover o 
desenvolvimento de competências essenciais, como raciocínio lógico, análise estatística e 
modelagem de sistemas dinâmicos. 
 Entretanto, a disseminação ampla dessa tecnologia enfrenta obstáculos relevantes, 
tais como: (i) a insuficiência de formação específica de docentes em instituições públicas, 
devido à escassez de domínio em matemática avançada e teoria de sistemas  (ii) limitações 
de recursos computacionais em escolas públicas e (iii) currículos rígidos que raramente 
abordam modelos estocásticos ou filtros de estado. O aprofundamento numa abordagem 
multinível da disseminação, pode desencadear: 

Para mitigar esses desafios, propõe-se uma abordagem multinível que inclui: (a) a 
inserção do tema em cursos técnicos, tecnológicos e disciplinas optativas de graduação; (b) 
o desenvolvimento de materiais didáticos acessíveis, como simulações interativas, vídeos e 
softwares livres (ex.: Python e bibliotecas como NumPy e SciPy); e (c) a formação de parcerias 
entre universidades e escolas para projetos de extensão, como o BitDogLab. (BITDOGLAB, 
2023). 

Espera-se que, com a implementação dessas ações, sejam alcançados os seguintes 
resultados: 
 
 As projeções concretas que o trabalho espera alcançar em larga escala, caso as ações 
propostas sejam implementadas, são: 

 
• Formação técnica avançada: estudantes de escolas públicas terão contato com 

ferramentas e conceitos avançados na formação básica ou técnica, estimulando o 
interesse por áreas como Engenharia, Física, Matemática Aplicada e Ciência de 
Dados. 

 
• Redução de lacunas formativas: diminuição da disparidade entre os currículos das 

instituições públicas e o conteúdo de ponta praticado em universidades de referência 
e empresas de tecnologia, promovendo maior equidade no acesso ao conhecimento  



 

 

 

• Produção de material didático nacional: desenvolvimento de livros, tutoriais e recursos 
didáticos que fortaleçam a autonomia científica e tecnológica no ensino de tecnologias 
estratégicas  

 
• Impacto na pesquisa e extensão: estímulo a projetos de iniciação científica e extensão, 

aplicando o filtro de Kalman em contextos como drones, sensores, previsão 
meteorológica e rastreamento de objetos, promovendo maior integração entre teoria e 
prática no ensino público. 

 Por fim, a disseminação do Filtro de Kalman configura-se não apenas como uma 
inovação pedagógica, mas também como uma estratégia de inclusão tecnológica e científica, 
contribuindo para a redução das desigualdades no acesso ao conhecimento técnico de ponta, 
(TENNE, 2000). 
 
 5          CONCLUSÕES E PERSPECTIVAS 

      
 A continuidade deste projeto requer a expansão de frentes de atuação voltadas à 
formação docente, produção de recursos educacionais e avaliação de impacto pedagógico. 
Como trabalhos futuros, propõe-se o desenvolvimento de cursos e oficinas para professores 
do ensino médio, técnico, tecnológico e superior, capacitando-os em tópicos essenciais à 
compreensão e aplicação do Filtro de Kalman. Também se recomenda a criação de ambientes 
digitais e simuladores interativos que auxiliem na visualização intuitiva da filtragem de estados 
e ruídos em tempo real. 
 Além disso, serão valiosas as experiências-piloto em escolas de ensino médio e 
técnico, e universidades públicas, com o objetivo de adaptar a teoria à realidade local, avaliar 
o engajamento dos estudantes e revisar as abordagens pedagógicas utilizadas. Projetos de 
pesquisa em educação matemática e ensino de engenharia podem investigar quais 
metodologias facilitam a assimilação de conceitos complexos como modelos estocásticos e 
sistemas dinâmicos. 
 Finalmente, ressalta-se a importância de estabelecer redes de colaboração entre 
instituições públicas, visando à criação de materiais abertos, infraestrutura computacional 
compartilhada e eventos científicos que incentivem o protagonismo estudantil no campo da 
ciência de dados e controle automatizado. 

 
REFERÊNCIAS BIBLIOGRÁFICAS 

 
ALEX, B. “ Kalman Filter- from the Ground Up” , 3rd Edition , Disponível em: 
https://www.kalmanfilter.net/default.aspx , Acesso em: 13  abril  2024. 

 
BitDogLab: a Revolução no ensino de eletrônica, programação e IoT :BITDOGLAB – 
Disponível em: https://www.fee.unicamp.br/bitdoglab-a-revolucao-no-ensino-de-eletronica-
programacao-e-iot/. Acesso em: 26 maio. 2024. 
 
KALAT, P.R. . A generalized parameter for α − β and α − β − γ target trackers I The 22nd IEEE 
Conference on Decision and Control, 1983. 

 
KALMAN, R. E.. A New Approach to Linear Filtering and Prediction Problems.  Trans. of the 
ASME - Journal of Basic Engineering ,  pages 35–45, 1960 
 
LUENBERGER, David G. Introduction to Dynamic Systems: Theory, Models, and 
Applications, John Wiley, 1 ed., Jan 1, 1991.  



 

 

 

 
MUTAMBARA, Arthur G.O., Design and Analysis of Control Systems, CRC Press, 1 ed., 
1999. 

 
OGATA, Katsuhiko, Engenharia de Controle Moderno, Ed Pearson, 5 ed., 2015. 
 
SCHMIDT, S. F. ;  L. A. MCGEE. “Discovery of the Kalman filter as a practical tool for 
aerospace and industry”. Rep., NASA-TM-86847 ,1985. 

 
TENNE, D. ; SINGH, T.  . Optimal design of α − β − (γ) filters Proceedings of the American 
Control Conference p. 4348–4352, 2000.  

 
 

UNDERSTANDING AND DISSEMINATING THE KALMAN FILTER: ESTIMATION OF THE 
UNCERTAIN REAL WORLD 

 
Abstract: The paper introduces the Kalman Filter as a crucial mathematical tool for estimating 
the state of dynamic systems in environments with imprecise measurements. It explains how 
the filter combines predictions and noisy measurements to obtain the best possible estimate, 
weighing the confidence of both. The historical application in the Apollo program and its current 
use in robotics, navigation (GPS) and computer vision are highlighted to demonstrate its vast 
importance. The text also simplifies the algorithm with a practical example of mass estimation, 
showing its recursive nature and the function of the "Kalman Gain" to smooth measurements. 
Finally, the methodology and expected results of a university extension project are presented, 
aiming to demystify the Kalman Filter and disseminate its knowledge since high school. 
 
Keywords: Estimation; Kalman Filter; High School; Dynamical Systems 




