
CASO PRÁTICO DE PBL PARA ENSINO DA ENGENHARIA DE
SOFTWARE: CONTROLE DE QUALIDADE ADICIONANDO VALOR POR
CODIFICAÇÃO - DOCUMENTATION AND QUALITY ASSURANCE AS

CODE

DOI: 10.37702/2175-957X.COBENGE.2025.6199

Autores: REGINALDO ARAKAKI,OVIDIO LOPES,RENATO PENHA,KAIANE CORDEIRO,PAULA
PIVA,ANNA ARAGÃO,BRUNA BRASIL ALEXANDRE

Resumo: This work describes how students encounter challenges in ensuring the quality of software
systems by implementing quality control procedures. At first, students and some professionals think
these activities are boring: documenting and applying test cases. No one likes this kind of activity.
Professors and coaches created one dimension of challenges for students: code quality, code
documentation, code control, and code rules. From a business view and technology viewpoint,
everything is code. As a result, the system code created for quality control and quality assurance
enabled students and business partners to develop a significant project related to the Quality
Control PBL Module.

Palavras-chave: Architecture as code,Documentation as code,Functional and Non Functional
requirements,PBL Project Based Learning,Software Engineering,Quality Assurance,Quality
Control,Business Drivers,ATAM,ArchitectureTradeoff.

CASO PRÁTICO DE PBL PARA ENSINO DA ENGENHARIA DE SOFTWARE:
CONTROLE DE QUALIDADE ADICIONANDO VALOR POR CODIFICAÇÃO -

DOCUMENTATION AND QUALITY ASSURANCE AS CODE

1​ INTRODUÇÃO

​ A dinâmica do mercado e da indústria tem nos sistemas digitais, o canal fundamental para
a disponibilização de produtos e serviços em todos os setores B2B (Business-to-Business),
B2Gov (Business-to-Poder Público) e B2C (Business-to-Consumer). Há algum tempo, a
necessidade de lançamento de novas funcionalidades está chegando ao lançamento de diversas
versões por semanas ou por dia, ao invés de meses, nos ciclos mais longos de engenharia
(Arakaki et al, 2020). Esta dinâmica de lançamento de sistemas de software exigem cuidados
arquiteturais, para que as modificações não somente de código de software, como também de
evoluções de infraestruturas de processamentos computacionais com muita frequência, sejam
mantidas robustas. Se fosse válida uma comparação, seria a evolução de um corpo humano
submetidas a intervenções cirúrgicas para correção ou para tratamento de contusões localizadas,
porém, com perdas de capacidades de outros órgãos afetados. Em sistemas acontece algo muito
similar. Ou seja, as intervenções de mudanças sobre partes do sistema trazem impactos que
devem ser balanceados e aferidos em termos de custo/benefício: o aprimoramento de uma parte
pode levar ao enfraquecimento de outras. Por exemplo, o tradeoff: Desempenho e Volume. Ao
ampliar a capacidade de tratar maior volume de clientes, emerge o risco de lentidão.
​ Os aspectos de qualidade da arquitetura como a disponibilidade envolvem os
chamados Business Drivers do sistema. Por exemplo, um aplicativo de carona, se ficar
indisponível, perde transações de carona aos clientes, com impactos de negócio.
Imagine-se um sistema de atendimento a um fluxo de internação hospitalar dentro de um
pronto socorro lidando com casos emergenciais que possam trazer impactos à saúde de
pessoas. Para isso, faz parte de controle arquitetural, aferir se os cenários como os
indicados afetam a resiliência do sistema: a disponibilidade do sistema está sendo
monitorada e, em caso de incidentes, dispõe de ações de alertas, alarmes e ações de
recuperação por acionamento de mecanismos automáticos. Todos esses eventos estão
com rastreabilidade? Ou seja, incluir o conhecimento e a documentação na forma de
código de programas que podem ser executados, para aferir a qualidade.
​ Como transformar esse conhecimento em código? É muito comum, diante de crises
de disponibilidade de sistemas, a restauração dos níveis de serviço depender muito de
pessoas específicas que detém o conhecimento pela experiência, quase ignorando a
documentação.
​ Tais conhecimentos incorporados no código se tornam ativos de software, pois têm
a chance de serem mantidos como parte do sistema, validando a qualidade
comportamental das funcionalidades e dos demais pilares que sustentam o sistema.

​ ​1.1 Objetivo do Artigo
​ ​O artigo documenta o caminho de aprendizagem em engenharia de software dos
estudantes do Inteli, até chegarem neste módulo de Controle de Qualidade Arquitetural
sob a ótica do Project Based Learning (PBL). Para isso, um caso prático onde os
estudantes são submetidos ao projeto-desafio da automação do controle de qualidade do
sistema pela arquitetura. Adicionalmente, ilustra-se casos de estudantes que chegam até
esta fase do curso, pensando e agindo sobre qualidade somente para cumprir metas de
notas: testes são maçantes, poucos úteis e provocam grande desperdício de tempo -
muito similar a atitude de profissionais pressionados a entregas com baixa qualidade.

2​ FUNDAMENTOS CONCEITUAIS

​ O estudante, visando o perfil do Engenheiro de Software, inicia os fundamentos de
pequenos programas e integração com elementos de hardware e software, incluindo
dispositivos para Internet das coisas (IoT), no seu primeiro ano de formação. Em seguida,
no 2o ano e 3o ano, os módulos de aprendizagem ampliam o foco de codificação de
pequenos programas e componentes para integração de sistemas. São arquiteturas com
infraestruturas computacionais locais (on premise) conectados com plataformas de cloud
computing. Acessando serviços por aplicativos em smartphones, notebooks, sensores e
atuadores acionados por páginas, links, botões e até comandos por linguagem natural.
São desafiados por arquiteturas com implementações robustas em termos de
desempenho, escalabilidade, rastreabilidade, segurança, precisão e tolerâncias a falhas.
​ O perfil profissional do egresso do Curso de Engenharia de Software do Inteli está
de acordo com as Diretrizes Curriculares Nacionais (DCNs) estabelecidas pela Resolução
CNE/CES 5/2016, que institui as Diretrizes Curriculares Nacionais para os cursos de
graduação na área de Computação. Além disso, as competências desenvolvidas no
curso, expressadas no projeto pedagógico do curso (aprovado pelo MEC com nota 5), são
ampliadas para atender às novas demandas do mercado de trabalho e da sociedade,
proporcionando uma formação que articula as necessidades locais e regionais com as
exigências globais, e o perfil profissional é ainda ampliado em função de novas demandas
apresentadas pelo mundo do trabalho, como ilustrado no item 2.1 sobre as trajetórias de
ensino, projetos e aprendizados aos estudantes.
​ Em cada um dos módulos PBL de Engenharia de Software, existe um metaprojeto
direcionador que catalisa um projeto junto a um parceiro da indústria ou poder público, e
os conceitos alinhados com as diretrizes estabelecidas no plano pedagógico. Obviamente,
os conceitos são conduzidos por todo o conjunto de disciplinas de exatas, liderança e de
negócios alinhadas com os fundamentos de engenharia de sistemas de modo a trazer a
suficiência lógica para o desenvolvimento do projeto do módulo.

Tabela 2.1 - Meta projetos e aprendizado em arquitetura de sistemas (Fonte: autores).

Módulo Meta Projeto Abrangência Engenharia de Software

M5 Sistemas em Cloud
Computing.

Processamento distribuído (incluindo infrastructure as code).

M6 Integração por Serviços
(SOA).

Arquitetura de integração: visão componentizada de serviços e
integração externa e legados.

M7 Interação e usabilidade PLN. Usabilidade em computação pervasiva e interação assíncrona por
linguagem natural.

M8 Arquitetura Tolerante a
Falhas.

Mecanismos e táticas arquiteturais para robustez, segurança e
resiliência de sistemas.

M9 Controle de Qualidade “as
Code”.

Programas e sistemas que aferem a qualidade de sistemas, onde a
codificação é o conhecimento.

M10 Fluxos de Integração
Contínua.

Publicações de novas versões 2 vezes por ano, para 2 vezes por
dia. Fluxos de desenvolvimento com controle de qualidade
automatizados e ágil.

Fonte: elaborado pelos autores

​ As referências científicas que servem de pilares e arcabouços de conhecimentos e
conceitos em todos esses módulos envolvem aspectos de qualidade de produto de
software (Pressman, 2021) e (ISO/IEC 25010), onde os aspectos críticos mapeados em
requisitos não funcionais podem ser aferidos estática e dinamicamente. Sobre o fluxo de
desenvolvimento, abrangendo o ciclo de vida do sistema, alcançando os usuários finais,
incidentes de ambiente de execução em produção (runtime) com nomenclatura indicada
no mercado como DEVOPS e DEVSECOPS têm-se a referência de normas internacionais
(ISO/IEC 12207). Ainda sobre a arquitetura de sistemas, focando produtos e processos, o
detalhamento de um sistema por visões (ISO/IEC 10746; RM-ODP) que envolvem
negócios, requisitos, mecanismos de engenharia e ferramentas de tecnologia organiza a
forma como as decisões de arquitetura foram estabelecidas facilitando as avaliações
(Táticas Arquiteturais SEI/CMU) e aferições de qualidade (ATAM/SEI/CMU). As táticas de
controle de arquitetura considerando os conceitos de malha fechada de controle (Cruz,
2004) como referências em malhas fechadas de controle, mostrando aos alunos como
muito das vulnerabilidades advém de mecanismos de controle em malha aberta (“funciona
bem enquanto funciona… Quando dá pau, trava tudo e daí o time de operação entra com
procedimentos do tipo stop/start e outros, com retentativas até restabelecer…”). Dessa
forma, a implementação de uma malha fechada de controle para os requisitos do sistema
– baseada na observação contínua, detecção proativa de desvios e ações corretivas
automatizadas sobre os elementos da solução – é fundamental. Este mecanismo garante
a resiliência do sistema com a máxima automação possível, eliminando a necessidade de
intervenções manuais reativas e permitindo que o próprio sistema restabeleça
rapidamente os níveis de serviço esperados.

2.1​ ​Mapa de Aprendizagem da Engenharia de Software Inteli com PBL

​ Após o primeiro ano, também concebido com técnicas de ensino PBL, com projetos
inspirados por desafios trazido por parceiros públicos ou privados do mercado, marcam o
início da formação do perfil de engenheiro de software com foco no desenvolvimento de
lógica computacional, fundamentos de integração de hardware e software, linguagens de
programação e sistemas operacionais (Site Inteli, 2025), (Arakaki et al, 2021), (Barrows,
1996), (Cugnasca et al, 2024). Ver a figura 2.1.

Figura 2.1 - Mapa de Aprendizado de Engenharia de Software (Fonte: autores).

Fonte: elaborado pelos autores

​ No terceiro ano, onde está o módulo foco deste artigo, tem-se uma trajetória para o
aprendizado da Engenharia de Software, como pode ser visto no desenho da figura 2.1 e
tabela 2.1. São os módulos M5 até M11. Os meta-projetos PBL e os pilares de maneira
sintetizada (Inteli PPC, 2024):

●​ M5 - O projeto envolve um sistema web com desafios de conceitos e práticas como
a criação de um aplicativo responsivo em estações internet e dispositivos móveis,
com claros destaques em computação distribuída em nuvem (Cloud Computing)
com camadas de interação humano-computador, lógica de negócios, base de
dados e integração com legados internos e externos;

●​ M6 - Neste módulo, a estrutura arquitetural do sistema enfatiza as integrações
internas e externas, onde conceitos de serviços, conexão sem estados (stateless)
das interfaces como as APIs, a rastreabilidade, disponibilidade, acessos
simultâneos, integração assíncrona mostra aos estudantes os aspectos de
escalabilidade dos sistemas dependem de decisões arquiteturais que atendam aos
requisitos não funcionais. Destacam-se os conceitos de Service Oriented
Architecture (SOA) e uso de algoritmos de recomendação usando técnicas de IA;

●​ M7 - O meta-projeto deste módulo desafia os estudantes à adoção de interação
humano-computador por linguagem natural tanto por textos, como por áudio e
vídeo. Com isso, a integração com serviços em cloud computing de processamento
de linguagem natural (PLN) são incorporados nos sistemas desenvolvidos, focando
os conceitos anteriores mais a interação assíncrona e ferramentas de IA (Hayashi
et al, 2020) e (Fujii et al, 2020). Os aspectos arquiteturais como disponibilidade,
rastreabilidade, observabilidade e tolerância à falhas são aprimorados;

●​ M8 - Evoluindo mais sobre aspectos não funcionais de um sistema, os alunos
aprendem a diferenciar conceitos de arquitetura com base em fundamentos das
normas ISO/IEC 10746, ISO/IEC 42010, ISO/IEC 25010, ATAM/SEI, (NIST, 2011) e
táticas arquiteturais. Malha fechada de controle é base da resiliência de sistemas
em disponibilidade, segurança, tolerância a falhas, rastreabilidade e outros. O
estudante desenvolve visões críticas para entender que a vulnerabilidade do
sistema não se resolve ampliando recursos de infraestrutura somente. Táticas de
arquiteturas devem implementar mecanismos para “resistir”, “detectar” e “atuar” e
garantir os níveis de serviços para os quais foram concebidos (Hayashi et al,
2020), (Hayashi et al, 2021), (Hayashi et al, 2023);

●​ M9 - Módulo foco deste artigo. Como garantir que os aspectos não funcionais de
um sistema estão bem construídos? As decisões arquiteturais conferem robustez
aos requisitos do sistema? Gerar códigos que reflitam esses requisitos tanto em
funcionalidade como em não funcionalidade foi o foco e tema deste artigo. Aos
estudantes, que até esse momento do curso sempre vivenciou e praticou a
documentação de sistemas na forma de textos em editores de documentos ou
markdown, foram desafiados em transformar em código (as code) de controle de
qualidade de aspectos como: regras de negócio, rastreabilidade, disponibilidade,
acessos simultâneos, funcionalidades, segurança, tolerância a falhas, alertas
preventivos e observabilidade;

●​ M10 - Esse módulo tem como foco a esteira integrada DEVOPS, DEVSECOPS de
automação, onde os elementos de controle de qualidade indicadas e desenvolvidas
no módulo M9 podem ser inseridas nesta esteira. O destaque deste módulo é a
escala da esteira. Alguns setores industriais hoje geram versões de software em
produção por dia, diferentemente de 2 versões por ano de esteiras mais antigas,
baseadas em processos manuais.

2.2​ Módulo sobre Qualidade de Sistemas e Arquitetura

​ Conforme destacado no item 1.1, módulo M9, o aprendizado conceitual e
profissional foca no controle de qualidade baseada em evidências estáticas e dinâmicas,
direcionadas e priorizadas por visões de arquitetura (ISO/IEC 42010, ISO/IEC 25010,
ISO/IEC 10746). Fazem parte da avaliação estática de código os conceitos de gestão de
configuração, mapa de calor de mudanças, cobertura de testes entre outros. Do ponto de
vista de avaliação dinâmica, o comportamento do sistema diante de cenários de
normalidade e de cargas não funcionais como volumes, acessos simultâneos,
disponibilidade. Incluem casos de testes simulando situações críticas para aferição do
comportamento citado.

2.3​ Projeto PBL - instanciação do meta projeto e execução
​ O módulo é dividido sempre em 5 sprints de entregas, por 10 semanas, a cada
duas semanas, divididos da seguinte forma, com controle de qualidade as code:

●​ Sprint Review SPR1: Foco do projeto e descrição de regras de negócio (business
drivers) como código, automatizando os fluxos críticos de negócio, com as devidas
rastreabilidade e alimentação de painéis de qualidade (quality dashboards);

●​ Sprint Review SPR2: Foco nos requisitos funcionais e não funcionais como código,
automatizando os fluxos críticos de arquitetura, com as devidas rastreabilidade
deste controle de qualidade e alimentação de painéis de qualidade (quality
dashboards);

●​ Sprint Review SPR3: Solução técnica avaliada em termos de códigos para verificar
aspectos de integração com serviços de base de dados, serviços externos e
demais serviços internos, incluindo os níveis de serviços contratados de
infraestrutura computacional. Profissionalmente, a avaliação estática da solução
ficaria mais completa, em termos de adoção de práticas de avaliação das táticas
arquiteturais para inspirar a codificação para realizar as aferição dinâmicas com
cenários que estimulem os mecanismos de código das táticas;

●​ Sprint Review SPR4: Consolidação do painel de controle de qualidade, alinhando
as automações e resultados que subsidiam a aferição de qualidade baseadas nas
dimensões de business, requisitos e solução técnica;

●​ Sprint Review SPR5: Revisão e ajustes dos itens construídos ao longo das Sprints
anteriores, incluindo a geração de uma storyboard baseada no tema do módulo.

​ Os próximos itens do artigo evidenciam o projeto realizado junto a um parceiro de
operação logística de entregas de alimentos, produtos e outras conveniências para
clientes finais (B2C) e clientes empresas (B2B).

3​ PBL - SISTEMA LOGÍSTICO

O rito PBL (Project Based Learning) foco deste artigo corresponde ao módulo M9 (ver
figura 2.1), onde um parceiro de mercado atuando na operação logística de ecommerce,
promove condições de conveniências para clientes pessoas físicas e clientes pessoas
jurídicas, focando em entregas na “última milha” (jargão do fluxo logístico que inclui desde
a coleta, distribuição e entrega na residência do cliente. Geralmente, nesta última etapa,
realizada por pacotes conduzidos por motoqueiros engajados no conceito de
colaboradores autônomos alocados por um processo muitas vezes chamado de
“uberização”. O aplicativo de apoio aos entregadores é o foco do projeto PBL, desafiando
os alunos ao entendimento, aferição da arquitetura e proposição do controle de qualidade
do sistema.

3.1​ Domínio do Problema - Escopo do Projeto

​ A parceria de indústria realizada com uma das maiores plataformas digitais de
delivery de produtos e serviços da América Latina proporcionou uma oportunidade de
atuação de alunos, professores e parceiros em um ecossistema caracterizado por sua
elevada complexidade tecnológica e operacional.
​ Foram definidos dois aspectos de business drivers norteadores deste estudo: (i) a
otimização da operação logística, com foco em estabilidade e previsibilidade sistêmica, e
(ii) a saúde do sistema como monitoramento de requisitos não funcionais, acompanhando
a estabilidade e confiabilidade da aplicação, ambos avaliados por meio da melhoria
contínua na relação de monitoramento e prevenção à falhas do sistema, agregando
suporte de engenharia.
​ Desse modo, o projeto foca em demonstrar a viabilidade e eficácia de
implementação de aferições de qualidade atribuindo valor ao código utilizando como base
de estudo o aplicativo com serviços digitais para os entregadores, que utilizam bicicletas
ou motocicletas, conectados com fornecedores de e-commerce, de onde o material
adquirido pelos clientes finais eram vendidos, pagos, empacotados e liberados para o
fluxo de retirada e entrega.

3.2​ Adição de Valor do Projeto
​ A plataforma citada hoje tem a sua qualidade mantida por processos convencionais
de estágios de desenvolvimento, testes funcionais, e mecanismos de controle de
qualidade humana, gerencial, com pouca automação. A tabela 3.2.1 mostra o foco
escolhido pela equipe para adicionar valor ao projeto.
​ Observe-se que na tabela, a adição de valor fica focado nos ganhos que a
automação de código traz para o sistema se comparado com a forma atual de controle de
qualidade. Nos controles de qualidade atuais, a verificação é baseada em pouca ou
nenhuma verificação de da qualidade. Já com o controle de qualidade como código, os
cenários de automação já adicionam valor com os códigos que podem verificar se as
funcionalidades e as não funcionalidades estão operando de acordo com os níveis
esperados.

Tabela 3.2.1 - Adição de valor ao projeto (Fonte:autores)

Fluxo da Plataforma Controle de Qualidade Atual Adição de Valor

Fluxo de funcionalidades
críticas.

Reativo. Com reclamação de
gestores de logística de motos.

Código de testes funcionais;
Código de testes não funcionais em
volumetrias, acessos simultâneos.

Comportamento do sistema:
aspectos não funcionais -
tempo de resposta, precisão
de saldos, precisão de
alocação de corridas.

Reativo. Não verificado em
termos de comportamento de
sistemas.

Sob volumes e acessos simultâneos:
-​ Códigos de testes de tempos de

respostas;
-​ Idem para precisão de saldos de

comissões;
-​ Idem para precisão de alocação de

corridas.

Ferramentas de controle de
qualidade.

Registros em planilhas. Dashboards digitais com acessos em
notebooks e smartphones, com alertas e
alarmes.

Fonte: elaborado pelos autores
​

Os estudantes produziram códigos utilizando algumas práticas realizadas na indústria
como a adoção de recursos de BDD (behavior-driven development), conforme ilustra a
figura 3.2.1 com um trecho de código que ilustra o controle de qualidade verificando a
alocação de entregadores com restrição de tempos, através de um código no padrão
Gherkin.

Figura 3.2.1 Trecho de código Gherkin de testes.

Fonte: elaborado pelos autores

3.3​ Requisitos funcionais e não funcionais considerados
Os requisitos funcionais e não funcionais escolhidos pela equipe foram aquelas

que sustentam os direcionadores de negócios da plataforma, que são aquelas que
suportam o bom andamento dos trabalhos dos entregadores, dos fornecedores de
e-commerce que devem ter as suas mercadorias vendidas entregues com a devida
agilidade para os clientes finais. Observe-se que nesta plataforma de entregadores o foco
é B2B (Business to Business) porém ao final o benefício é B2C (Business to Consumer),
pois o afetado, o envolvido é o cliente que recebe no conforto da sua residência as
encomendas de maneira precisa e íntegra.

A tabela 3.3.1 indicam algumas especificações consideradas para serem
verificadas como código de aferição da qualidade.

Tabela 3.3.1 - Requisitos selecionados para aferição por código (Fonte: autores).

Classificação Fluxo a ser aferido (Siglas: RF - Requisito Funcional, RNF - Requisito Não Funcional)

RNF Alocação automática de encomendas considerando raios de proximidade (entregador,
fornecedor/estoque, consumidor);

RNF Atualização em tempo real dos entregadores, com predição de atrasos e entregas nos níveis
contratados;

RNF Taxas de atualização até 1 seg, em 99% das vezes, dos mapas de entregas (normais, em
atraso, em alocação);

RNF Taxa de ganho em comissão atualizado em até 2 segundos, 99% das vezes dos entregadores;

RNF Tempo de resposta das demais solicitações em até 3 segundos, 95% da demanda;

RF As funcionalidades de consultas por cada um dos perfis (entregador, fornecedor, gestor de
entregas, suporte aos clientes), decorrentes dos demais requisitos não funcionais listados
acima.

Fonte: elaborado pelos autores

Observe que os itens a serem automatizados garante que a aferição não é manual.

Os requisitos funcionais e não funcionais da tabela foram mapeados para serem aferidos
por códigos executáveis, diferentemente de processos manuais, humanos. Aos
estudantes ficou bem entendido que se os itens da tabela na verdade indicam riscos de

indisponibilidades do sistema e também de erros de alocação que sem automação, esses
riscos são tratados no pior cenário: procedimentos reativos, a partir de reclamações feitas
pelos canais de atendimento e por gestores e diretamente pelos executivos.

3.4​ Solução técnica

​ Com base na adição de valor proposto, no mapeamento de riscos com base nos
elementos funcionais e não funcionais citados, os estudantes puderam chegar ao ponto
indicado pela disciplina: não é suficiente cuidar da qualidade apenas com as
funcionalidades e suporte. Como cuidar da saúde de um ser humano, um sistema crítico
como esse deve ser cuidadosamente examinado nos pontos críticos (“coração, pressão,
sinais vitais”) para garantir a fortaleza e o controle dos riscos de indisponibilidade. A
equipe de projeto então construiu com base nessas visões conectadas ao business
drivers, uma visão de engenharia, de solução técnica, capaz de apoiar a gestão da
qualidade deste “corpo humano digital da logística”. Ver a figura 3.4.1.

Figura 3.4.1 - Pontos de conexões vitais do sistema e ferramentas (Fonte: autores)

Fonte: elaborado pelos autores

​ A API Central é o módulo onde a plataforma realiza os acionamentos dos serviços
de consulta, requisições e coleta de dados dos algoritmos inteligentes da retaguarda. A
API Central desempenha o papel de núcleo especializado do sistema, concentrando tanto
a execução da lógica de negócio quanto a responsabilidade pela exposição de contratos
de integração com sistemas externos. Já o Serviço de Monitoramento torna-se essencial
para garantir que esses requisitos sejam observados, mensurados e avaliados sob
condições reais e simuladas de operação. Esse serviço é integrado diretamente à API
Central e responde pela instrumentação ativa da aplicação, realizando a coleta
automatizada de métricas como tempo de resposta, throughput, taxa de erro por endpoint,
variações de latência e disponibilidade sob carga.

Por meio de execuções controladas com ferramentas como o Locust, o sistema é
submetido a cenários diversos que avaliam sua resiliência, estabilidade e escalabilidade,
permitindo a antecipação de gargalos e pontos críticos. Serviço de Monitoramento são
encaminhados a um componente especializado: o Prometheus, responsável pelo
armazenamento estruturado e eficiente das métricas técnicas. Este serviço de tratamento
atua como um banco de séries temporais orientado à observabilidade, permitindo que
cada ponto de controle definido na arquitetura seja consultado, analisado e correlacionado

de forma granular ao longo do tempo e também para predição, conectando-se com
algoritmos inteligentes.

Com base nas integrações realizadas, o Prometheus coleta automaticamente
informações expostas por endpoints instrumentados, armazenando indicadores como
tempo de resposta por rota, porcentagem de erros, uso de CPU, memória e
disponibilidade por serviço. Essas métricas não apenas refletem o comportamento
operacional do sistema, mas também documentam a evolução da qualidade como um
ativo versionado, possibilitando auditorias, rastreamento de regressões e análises
comparativas entre diferentes versões da aplicação.

Ao observar a figura 3.4.1 nota-se o Serviço de Visualização, implementado com o
uso do Grafana. Esse componente é responsável por transformar os dados operacionais
em interfaces analíticas compreensíveis, oferecendo painéis dinâmicos e personalizáveis
que permitem a leitura e a interpretação estratégica dos indicadores de qualidade.

3.5​ Implementação e resultados
Qual foi o resultado do foco em código no controle de qualidade deste PBL? Um

mapa foi construído com base nos resultados produzidos pela equipe organizados no
repositório de projeto (Repositório Inteli, 2025). A tabela 3.5.1 destaca este material.

Tabela 3.5.1 - Mapa de código e valor adicionado pelos estudantes (Fonte: autores).

Qualidad
e as Code

Artefatos Destaques

Ativo
versionável

Gherkin,
YAML, DSLs

Requisitos funcionais e não funcionais como código controlado em repositório
com mecanismos de gestão da configuração, de maneira uniforme ao fonte.

Testes BDD, TDD Validações automatizadas, para testes de regras de negócios, testes técnicos
de integração e de regressão. Rastreabilidade do controle de qualidade
baseada em dados.

Documento Restrições
de negócios
e técnico

Regras técnicas de integração, regras de negócio, regras de lei, limitações de
sistemas internos e externos, na forma de código que evidenciam o
comportamento dinâmico do sistema.

Métricas Observability A observabilidade do sistema, as evidências e as ações para implementação
de controle completo, em malha fechada, com tempos de respostas
cibernéticas.

Ciclo de
Vida

Automação
de esteiras

As esteiras de devsecops instrumentados para a obtenção de continuous
integration e continuous deployment (CI/CD).
Automação e controle de configuração em escala de equipes distribuídas.

Fonte: elaborado pelos autores

Veja que o foco em controle automatizado da qualidade pode cobrir os diversos

aspectos da engenharia de software, tanto em qualidade de produtos como também da
qualidade de processos, conforme as indicações de normas como a ISO/IEC 122077,
ISO/IEC 25010 e as boas práticas de arquiteturas suportadas por código. Essa
modelagem de governança de qualidade deverá contribuir fortemente para a grande
adoção de geração de códigos utilizando ferramentas de Inteligência Artificial como as
LLMs (Large Language Models).

​A avaliação do contexto de controle de qualidade revela uma transformação
estrutural profunda promovida pela nova arquitetura. No cenário anterior, a qualidade era
tratada de forma reativa, não havia uma visão contínua, distribuída ou automatizada da

qualidade, e os atributos não funcionais raramente eram monitorados em tempo de
execução. Ainda mais crítico, a conexão entre o código-fonte e a operação logística
concreta era praticamente invisível: falhas percebidas em campo — como lentidão nas
telas, valores inconsistentes ou falhas de comunicação entre sistemas — não
encontravam representação rastreável no sistema técnico. Essa ausência de visibilidade e
rastreabilidade compromete a capacidade de diagnóstico, resposta e aprendizado,
criando um abismo entre a engenharia de software e a realidade operacional.

A Tabela 3.5.1 descreve como a "Qualidade como Código" transforma artefatos de
desenvolvimento em ativos versionados, como requisitos e testes, integrados ao
código-fonte. Essa abordagem automatiza validações e o ciclo de vida via esteiras CI/CD,
garantindo rastreabilidade e controle. O resultado é um sistema com observabilidade e
controle em malha fechada, promovendo maior qualidade e resiliência.

4​ CONSIDERAÇÕES FINAIS

Os resultados obtidos foram bastante relevantes para os estudantes, parceiros,
professores e orientadores deste módulo de Controle de Qualidade. Para os estudantes, foram 5
repositórios que se transformaram da seguinte forma: se em módulos anteriores, os alunos
produziam muitos documentos escritos, nesse buscaram trazer mais diagramas e menos textos.
Já partiram para as visões de arquitetura com a criação de códigos de aferição dinâmica de testes
de negócios em termos de volumes, precisão e desempenho sempre focando em limites de
negócio, no caso da logística de ecommerce B2B e B2C.

Do lado dos parceiros, ficou bastante evidente a diferença entre as práticas atuais e as
provocações e desafios enfrentados e entregues pelos alunos. Dos artefatos entregues, código de
testes que normalmente são realizados por processos, com pouca adição de valor e registros
manuais se tornaram em gráficos e mensagens de alertas ou de alarmes on line, em casos
críticos no fluxo da operação e atendimento aos clientes, no caso operadores de entregas,
motociclistas e clientes pessoas jurídicas.

Os professores de computação e de orientação, em conjunto, puderam refletir e provocar
os alunos sobre posturas e atitude de qualidade, incluindo palestras de gestores de empresas
digitais do Brasil e de Big Techs da Califórnia para discussões de boas práticas sobre a adoção do
contexto de codificar não somente os componentes do sistema, mas todo o processo de gestão
de configuração, suporte a gestão de mudanças. Um caso importante foi a confirmação de que
novas gerações de profissionais são bem mais afeitas ao ferramental dinâmico como dashboards,
mensagens, alertas, e demais mídias que combinam com códigos ao invés de documentos
volumosos e passivos (como os .docx, planilhas e diagramas extensos).

A pesquisa, um caso prático de PBL em um curso de Engenharia de Software com um
parceiro de logística, tem uma generalização limitada. Apesar dos benefícios observados, faltam
comparações e métricas quantitativas para medir o impacto no aprendizado e análise
comparativas. Pesquisas futuras poderiam replicar o modelo em outros contextos, realizar estudos
comparativos e desenvolver instrumentos quantitativos para avaliar o impacto da "Qualidade como
Código".

​ AGRADECIMENTOS

​ Agradecimento ao Instituto Inteli (direção e coordenação) do curso de engenharia
de software pelo estímulo ao compartilhamento de informações e conhecimentos
relacionados ao ensino PBL e os impactos no conhecimento dos alunos, especialmente
sobre os aspectos de controle de qualidade de sistemas tanto em posturas técnicas,
como em liderança. Aspectos de qualidade de arquitetura são difíceis de serem
assimilados quando se trata de requisitos não funcionais que trazem precisão, resiliência,
disponibilidade difíceis de serem medidos e controlados pelas sutis relações de tradeoffs.

​ REFERÊNCIAS

Repositório Inteli. Aplicação, Testes, Ferramentas Utilizadas. Solicitar acessando o site
do Instituto Inteli https://www.inteli.edu.br/. Acessado em Maio de 2025.
ARAKAKI, R.; HAYASHI, V. T. and RUGGIERO, W. V. "Available and Fault Tolerant IoT
System: Applying Quality Engineering Method", 2020 International Conference on
Electrical, Communication, and Computer Engineering (ICECCE), 2020, pp. 1-6, doi:
10.1109/ICECCE49384.2020.9179341.

ARAKAKI, R. et al. Avaliação do oferecimento a distância de laboratório de eletrônica
digital por meio de objetivos de aprendizagem e métricas do AVA. In: ANAIS do XLIX
Congresso Brasileiro de Educação em Engenharia, 2021. DOI:
https://doi.org/10.37702/cobenge.2021.3566;

Barrows, H. S. (1996). Problem-Based Learning in Medicine and Beyond: A Brief
Overview. New Directions for Teaching and Learning, 1996, 3-12.
http://dx.doi.org/10.1002/tl.37219966804;

BASS, Len; CLEMENTS, Paul; KAZMAN, Rick. Software Architecture in Practice. 3. ed.
Boston: Addison-Wesley, 2012.

CRUZ, José Jaime da. Entendendo e ajustando malhas de controle. São Paulo: GAESI
– EPUSP, 2004.

CUGNASCA, Paulo Sérgio et al. O Papel do Laboratório de Eletrônica Digital como
Disciplina Integradora de Competências para o Desenvolvimento de Projetos de
Engenharia. In: 52º Congresso Brasileiro de Educação em Engenharia, 2024, Vitória.
Anais. Vitória. DOI: 10.37702/2175-957X.COBENGE.2024.5074.
HAYASHI, V. et al. Laboratório Remoto para o Ensino de Engenharia. In: S
WORKSHOPS DO CONGRESSO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO
(WCBIE), 9. , 2020, Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação,
2020. p. 187-194. DOI: https://doi.org/10.5753/cbie.wcbie.2020.187;

HAYASHI, V. T. et al. Laboratório Virtual com Dados Reais. In: SIMPÓSIO BRASILEIRO
DE EDUCAÇÃO EM COMPUTAÇÃO (EDUCOMP), 1. , 2021, On-line. Anais [...]. Porto
Alegre: Sociedade Brasileira de Computação, 2021 . p. 296-304. DOI:
https://doi.org/10.5753/educomp.2021.14497;

HAYASHI, Victor Takashi et al. Implementation of PjBL With Remote Lab Enhances the
Professional Skills of Engineering Students. August 2023. IEEE Transactions on
Education PP(99):1-10. DOI:10.1109/TE.2023.3243532;

INTELI PPC. Projeto Pedagógico do Curso de Bacharelado em Engenharia de
Software. 2024. Acesso em Janeiro de 2025.

ISO/IEC 12207:2008 Systems and software engineering – Software life cycle
processes​ ​ ​ ​ ​ ​ ​ ​ http://www.iso.org/iso;

ISO/IEC 25010:2011 - Systems and software engineering -- Systems and software
Quality Requirements and Evaluation (SQuaRE) - System and software quality
models​ ​ http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733;

ISO/IEC/IEEE 42010:2022. Systems and software engineering - Architecture
description​ ​ ​ ​ ​ https://www.iso.org/standard/74393.html;

ISO/IEC 10746-2:2009 Information technology — Open distributed processing —
Reference model: Foundations;

INSTITUTO NACIONAL DE PADRÕES E TECNOLOGIA – NIST; DEPARTMENT OF
DEFENSE – DoD. Guide to Software Architecture Evaluation. Gaithersburg:
NIST/DoD, 2011. Disponível em: https://www.nist.gov. Acesso em: 26 mai. 2025;

PRESSMAN, ROGER; MAXIM, BRUCE; Revisão Técnica ARAKAKI, R. Engenharia de
Software: Uma Abordagem Profissional [Versão em Portuguës Brasil]. AMGH 2021;

SEI – Software Engineering Institute. ATAM: Architecture Tradeoff Analysis Method.
Pittsburgh, PA: Carnegie Mellon University, 2007. Disponível em: https://sei.cmu.edu.
Acesso em: 26 mai. 2025.

HAYASHI, V.; GARCIA, V.; ANDRADE, R. A.; ARAKAKI, R. (2020). OKIoT Open
Knowledge IoT Project: Smart Home Case Studies of Short-term Course and
Software Residency Capstone Project. In: Proceedings of the 5th International
Conference on Internet of Things, Big Data and Security - IoTBDS, ISBN
978-989-758-426-8; ISSN 2184-4976, pages 235-242. DOI: 10.5220/0009366002350242.

HAYASHI,V. T.; FUJII, T.; ARAKAKI, R.; AMARAL, H.L.M.; SOUZA, A.N.; 2020. Boa
Energia: Base de Dados Pública de Consumo Residencial com Qualidade de Dados.
Evento: XXXVIII Simpósio Brasileiro de Telecomunicações e Processamento de Sinais
(SBrT2020); DOI: 10.14209/SBRT.2020.1570648906.

A PROJECT-BASED LEARNING CASE STUDY FOR SOFTWARE ENGINEERING:
QUALITY CONTROL ADDING VALUE BY CODING - GETTING DOCUMENTATION

AND QUALITY ASSURANCE AS CODE.

Abstract: This work describes how students encounter challenges in ensuring the quality
of software systems by implementing quality control procedures. At first, students and
some professionals think these activities are boring: documenting and applying test cases.
No one likes this kind of activity. Professors and coaches created one dimension of
challenges for students: code quality, code documentation, code control, and code rules.
From a business view and technology viewpoint, everything is code. As a result, the
system code created for quality control and quality assurance enabled students and
business partners to develop a significant project related to the Quality Control PBL
Module.
Keywords: Architecture as code, Documentation as code, Functional and Non Functional
requirements, PBL Project Based Learning, Software Engineering, Quality Assurance,
Quality Control, Business Drivers, ATAM, ArchitectureTradeoff.

