
DESENVOLVIMENTO DE UM ROBÔ SEGUIDOR DE LINHA
UTILIZANDO PROCESSAMENTO DIGITAL DE IMAGENS

DOI: 10.37702/2175-957X.COBENGE.2025.6169

Autores: IGOR RODRIGUES CASSIMIRO,MARCO ANTONIO DE SOUZA LEITE
CUADROS,MARCELO VICTOR FERREIRA BARBOSA,CAIO LOPES DE OLIVEIRA,NICOLAS
NASáRIO FERREIRA,ENZO MEDEIROS AGNEZ

Resumo: Este trabalho apresenta um robô seguidor de linha desenvolvido como atividade prática da
disciplina de Processamento Digital de Imagens. O protótipo, baseado em ESP32 S3 e uma web-cam,
utiliza Python com OpenCV para processamento em tempo real, aplicando Transformada de Hough e
segmentação HSV. A metodologia incluiu pré-processamento de imagens (filtros e operações
morfológicas), definição de ROI e cálculo de ângulos para navegação, com interface PyQt5 para
ajuste de parâmetros. Os resultados comprovaram a eficácia dos métodos clássicos de PDI em
robótica educacional, destacando a integração teoria-prática no ensino de engenharia. O projeto
demonstrou a aplicabilidade de técnicas de visão computacional em sistemas embarcados acessíveis,
reforçando a importância de abordagens interdisciplinares na formação engenheira.

Palavras-chave: Processamento Digital de Imagens,Visão Computacional,Robótica

DESENVOLVIMENTO DE UM ROBÔ SEGUIDOR DE LINHA UTILIZANDO

PROCESSAMENTO DIGITAL DE IMAGENS

1 INTRODUÇÃO

 A transformação digital nas indústrias, caracterizada pela Indústria 4.0, integra
tecnologias como Inteligência Artificial, Robótica, Internet das Coisas (IoT) e análise avançada
de dados, possibilitando automação inteligente e otimização em tempo real dos processos
produtivos (ABDI, 2019). De acordo com a Agência Brasileira de Desenvolvimento Industrial,
essa adoção tecnológica apresenta potencial para gerar uma economia anual de R$ 73
bilhões no Brasil.

No entanto, persistem obstáculos significativos para a consolidação da Indústria 4.0 no país,
incluindo limitações de infraestrutura tecnológica, restrições financeiras e, principalmente,
desconhecimento sobre os benefícios dessas inovações para a competitividade industrial
(Cordeiro, Reis e Fernandes, 2024). Esses desafios destacam a necessidade de reformular a
formação de engenheiros, incorporando conteúdos atualizados e experiências práticas
alinhadas às demandas do setor produtivo.

Particularmente na formação em engenharia, observa-se uma lacuna curricular em temas
emergentes como Visão Computacional e IoT (CNI, 2016). O processamento digital de
imagens emerge como tecnologia crítica nesse contexto, com aplicações versáteis no
desenvolvimento de sistemas robóticos e automação industrial.

Neste trabalho, apresenta-se uma experiência prática desenvolvida no Programa de Pós-
Graduação em Engenharia de Controle e Automação do IFES Serra, na disciplina de
Processamento Digital de Imagens. Como mostra a Figura 1, o projeto envolveu o
desenvolvimento colaborativo de um robô seguidor de linha, utilizando técnicas de visão
computacional e programação em Python, com objetivo de aproximar os alunos dos conceitos
fundamentais da Indústria 4.0 através da aprendizagem ativa.

A abordagem pedagógica adotou os princípios de Freire (1996), enfatizando o protagonismo
discente. Os alunos foram responsáveis por: (1) planejar estratégias de detecção de direção,
(2) definir regiões de interesse, (3) implementar diferentes abordagens de segmentação de
imagens, e (4) testar parâmetros de controle, com o professor atuando como mediador do
processo.

Os resultados demonstraram que o robô seguidor de linha (Figura 1) alcançou seu objetivo
funcional, comprovando a eficácia da abordagem no desenvolvimento de competências
técnicas e na integração multidisciplinar de conhecimentos em processamento de imagens,
controle e automação. A atividade ainda estabeleceu conexões relevantes com outros
componentes curriculares, incluindo matemática aplicada e sistemas embarcados.

Este artigo está organizado em quatro seções principais: a Seção 2 apresenta a
fundamentação teórica; a Seção 3 detalha a metodologia e recursos tecnológicos utilizados;
a Seção 4 discute os resultados obtidos; e a Seção 5 apresenta as conclusões e perspectivas
futuras, que incluem a incorporação de técnicas baseadas em redes neurais convolucionais.

Figura 1: Projeto de seguidor de linha utilizando Processamento
Digital de Imagens

 Fonte: Autoria Própria (2025)

2 FUNDAMENTAÇÃO TEÓRICA

2.1 Processamento Digital de Imagens (PDI)

O Processamento Digital de Imagens (PDI) compreende técnicas para manipulação e análise
de imagens digitais, representadas matematicamente como funções discretas bidimensionais
f(x,y), onde x e y são coordenadas espaciais e f(x,y) representa a intensidade do pixel
(GONZALEZ; WOODS, 2010). No caso de imagens coloridas no modelo RGB, utilizam-se três
matrizes correspondentes aos canais vermelho, verde e azul.

As principais etapas do PDI incluem:

• Pré-processamento (filtragem e realce)
• Segmentação (isolamento de regiões de interesse)
• Análise (extração de características)

2.2 Transformada de Hough

A Transformada de Hough é um método robusto para detecção de formas geométricas em
imagens, que mapeia pontos do espaço imagem para um espaço de parâmetros
acumuladores (FERRIANI; RIBEIRO, 2005). Para detecção de círculos, utiliza-se a equação
paramétrica:

 (x - x₀)² + (y - y₀)² = r² (1)
onde:

• (x₀, y₀) = coordenadas do centro
• r = raio do círculo

2.3 Detecção de Círculos com OpenCV

A implementação cv2.HoughCircles() do OpenCV utiliza a Transformada de Hough por
gradiente (DUDA; HART, 1972), com os seguintes parâmetros ajustáveis:

Tabela 1: Parâmetros do algoritmo de Processamento Digital de Imagens

Parâmetro Descrição

dp Razão inversa entre resolução do acumulador e da imagem

minDist Distância mínima entre centros detectados

param1 Limiar superior para detecção de bordas

param2 Limiar de votos no acumulador

minRadius Raio mínimo para detecção

maxRadius Raio máximo para detecção

 Fonte: Autoria Própria (2025)

3 METODOLOGIA

3.1 Desenvolvimento do Protótipo

O robô seguidor de linha foi desenvolvido no laboratório GAIn conforme as seguintes etapas:

1. Projeto e Fabricação:

o Projeto mecânico e elétrico
o Desenvolvimento do circuito impresso (PCB) personalizado
o Montagem com microcontrolador ESP32 S3 e motores

Figura 2: Protótipo do robô seguidor de linha utilizado no experimento

 Fonte: Autoria Própria (2025)

2. Configuração do Ambiente:

o Pista de testes em MDF branco
o Dois círculos impressos como referência de navegação
o Linha preta contínua para seguimento

Figura 3: Pista utilizada para os testes do robô seguidor de linha

 Fonte: Autoria Própria (2025)

3.2 Sistema de Visão Computacional

Detecção de Círculos:

• Utilizou-se a função cv2.HoughCircles() do OpenCV
• Parâmetros ajustados para detectar apenas os dois círculos de referência
• Construção de vetor de orientação entre os centros dos círculos

Detecção de Linha:

1. Pré-processamento:
o Conversão para espaço de cores HSV
o Segmentação por limiarização
o Aplicação de operações morfológicas

2. Transformada de Hough probabilística (cv2.HoughLinesP())

o Região de Interesse (ROI) definida à frente do robô
o Eliminação de ruídos e falsas detecções

3.3 Lógica de Controle

Comandos pré-setados e enviados automaticamente pelo algoritmo conforme tabela 2:

Tabela 2: Comandos enviados via interface ao robô ESP32 S3

 Fonte: Autoria Própria (2025)

Fluxo Automático:

1. Cálculo do ângulo entre os vetores (círculos e linha)
2. Tomada de decisão baseada no ângulo calculado
3. Envio de comandos via HTTP para a ESP32

3.4 Implementação do Software

Estrutura do Código:

O sistema foi implementado em Python utilizando OpenCV para processamento de imagens
e PyQt5 para a interface gráfica, seguindo uma abordagem modular com três componentes
principais. A classe CircleDetector executa a detecção de círculos através da função
cv2.HoughCircles(), realizando conversão para escala de cinza, aplicação de filtro Gaussiano
e configuração dos parâmetros de detecção (dp, minDist, param1 e param2), retornando as
coordenadas e raios dos círculos identificados. A classe LineDetectorInteractive processa a
linha de navegação convertendo a imagem para HSV, aplicando limiarização, operações
morfológicas e cv2.HoughLinesP() para detectar segmentos lineares dentro de uma região de
interesse pré-definida. Já a classe RobotController gerencia a comunicação com o hardware
através de conexão WiFi, enviando comandos HTTP para a ESP32 que controla os motores,
implementando a lógica básica de movimentação (avanço, curvas e recuo).

Comando Motor Esquerdo Motor Direito

Frente +70% +70%

Virar à direita +70% +50%

Virar à esquerda +50% +70%

Ré -50% -50%

Figura 4: Interface gráfica de comunicação desenvolvida em PyQt

 Fonte: Autoria Própria (2025)

Ciclo de Controle:

1. Captura da imagem (webcam)
2. Processamento visual
3. Cálculo da direção
4. Envio do comando
5. Atualização da interface

O fluxograma apresenta o ciclo completo de processamento e controle do robô seguidor de
linha, conforme implementado no projeto. O fluxo segue uma sequência lógica de operações:

1. INICIAR: O sistema é inicializado, carregando todos os parâmetros de configuração,
bibliotecas e estabelecendo a conexão com o robô.

2. CAPTURAR QUADRO: A câmera do sistema obtém um novo quadro (frame) do
ambiente, que contém a pista com a linha de navegação e os círculos de referência.

3. APLICAR HSV: A imagem colorida é convertida do espaço de cores RGB para HSV,
que permite melhor segmentação da linha preta e dos marcadores coloridos, sendo
menos sensível a variações de iluminação.

4. APLICAR BLUR: Um filtro de suavização (como o Gaussiano) é aplicado para reduzir
ruídos e pequenas imperfeições na imagem, preparando-a para as etapas seguintes
de processamento.

5. APLICAR HOUGH PARA CÍRCULOS: A Transformada de Hough é utilizada para
detectar os círculos de referência na imagem. Esta etapa identifica com precisão a
posição e o tamanho dos marcadores circulares.

6. APLICAR ROI: Define-se uma Região de Interesse (ROI) à frente do robô, delimitando
a área onde será realizada a detecção da linha. Isso aumenta a eficiência do
processamento ao ignorar áreas irrelevantes da imagem.

7. APLICAR HOUGH PARA LINHAS: Na ROI definida, aplica-se a Transformada de
Hough Probabilística para detectar segmentos de linha, identificando assim a trajetória
que o robô deve seguir.

8. CALCULAR ÂNGULO: Com base nas posições dos círculos detectados e dos
segmentos de linha, calcula-se o ângulo de orientação necessário para o robô seguir a
trajetória correta.

9. ENVIAR COMANDO PARA O ROBÔ: O ângulo calculado é convertido em comandos
de movimento específicos (avançar, virar à esquerda/direita ou recuar) que são
enviados ao microcontrolador ESP32 via comunicação sem fio.

Este ciclo se repete continuamente enquanto o sistema está em operação, criando um laço
fechado de realimentação que permite ao robô ajustar sua trajetória em tempo real, mantendo-
se alinhado com a linha de navegação e utilizando os círculos como referência para orientação
inicial. A abordagem mostrou-se eficiente tanto na detecção precisa dos elementos visuais
quanto na resposta rápida do sistema de controle.

Figura 5: Fluxograma do algoritmo

Fonte: Autoria Própria (2025)

4 RESULTADOS E DISCUSSÃO

O sistema desenvolvido apresentou desempenho satisfatório nos testes realizados, validando
a eficácia da abordagem baseada em visão computacional para navegação autônoma. Os
resultados foram analisados sob três aspectos principais: detecção de elementos visuais,
estratégia de controle e robustez do sistema, permitindo uma avaliação crítica das escolhas
técnicas adotadas.

4.1 Detecção de Elementos Visuais

A detecção dos círculos de referência utilizando cv2.HoughCircles() mostrou-se estável após
ajuste dos parâmetros (dp=1.2, minDist=100, param1=50, param2=30), garantindo
identificação consistente dos marcadores. A formação de um vetor entre os centros dos

círculos provou-se eficiente para orientação inicial do robô, corroborando a escolha da
Transformada de Hough para detecção de formas geométricas em ambientes estruturados
(Gonzalez & Woods, 2010).

A segmentação da linha de navegação no espaço HSV, seguida pela aplicação da
Transformada de Hough Probabilística (cv2.HoughLinesP()), demonstrou maior eficiência em
comparação a abordagens baseadas apenas em limiarização RGB, reduzindo falsas
detecções causadas por variações de iluminação. A definição de uma Região de Interesse
(ROI) contribuiu significativamente para minimizar interferências de ruídos visuais,
aumentando a confiabilidade do sistema.

4.2 Estratégia de Controle e Desempenho

O sistema de controle implementado, baseado em comandos pré-definidos (Tabela 2),
respondeu adequadamente às variações de trajetória, executando movimentos de avanço,
curvas e recuo conforme necessário. A lógica de decisão por ângulo relativo entre os círculos
e a linha mostrou-se eficaz para navegação em percursos fechados, embora apresente
limitações em trajetórias mais complexas, como curvas acentuadas ou intersecções.

A interface gráfica desenvolvida em PyQt5 permitiu monitoramento em tempo real e ajustes
manuais quando necessário, facilitando a validação experimental. Contudo, observou-se que
a latência na comunicação WiFi (entre o algoritmo e o ESP32) em alguns casos introduziu
pequenos atrasos na resposta do robô, um aspecto que poderia ser otimizado em futuras
implementações com protocolos mais eficientes (e.g., comunicação serial direta ou MQTT).

4.3 Robustez e Limitações

O sistema mostrou-se robusto em condições controladas de laboratório, mantendo
desempenho consistente sob variações moderadas de iluminação. Entretanto, testes em
ambientes com iluminação não uniforme ou fundos não brancos revelaram desafios adicionais
na segmentação da linha, indicando que a abordagem atual depende criticamente do
contraste entre a pista e a linha preta.

Apesar disso, os resultados confirmam que técnicas clássicas de PDI (Processamento Digital
de Imagens) — como filtragem espacial, transformada de Hough e operações morfológicas —
são suficientes para navegação autônoma em ambientes estruturados, alinhando-se com
trabalhos anteriores na área (Duda & Hart, 1972). A escolha por métodos deterministicos (em
vez de redes neurais) justificou-se pela transparência do processo decisório e menor demanda
computacional, aspectos pedagógicos relevantes para o escopo do projeto.

4.4 Perspectivas de Melhoria

Embora a solução atual atenda aos objetivos propostos, dois aprimoramentos são sugeridos:

• Implementação de filtros adaptativos (e.g., CLAHE para normalização de iluminação)
para aumentar robustez em cenários dinâmicos.

• Exploração de métodos híbridos, combinando técnicas clássicas com redes neurais
convolucionais (CNNs) para detecção de padrões em cenários mais complexos.

Essas melhorias poderiam estender a aplicabilidade do sistema sem comprometer sua
eficiência computacional, um requisito crítico para plataformas embarcadas como a ESP32.

Figura 6: Prática em funcionamento

 Fonte: Autoria Própria (2025)

5 CONSIDERAÇÕES FINAIS

Este trabalho demonstrou a viabilidade prática de integrar técnicas consolidadas de visão
computacional - como segmentação por cor no espaço HSV, operações morfológicas e a
Transformada de Hough - com sistemas embarcados baseados no microcontrolador ESP32
para controle de um robô móvel autônomo. A abordagem adotada proporcionou um valioso
ambiente de aprendizagem para os alunos de pós-graduação, permitindo o desenvolvimento
simultâneo de competências técnicas e analíticas no campo de automação e visão
computacional.

Os resultados obtidos confirmaram que métodos clássicos de processamento de imagens,
quando devidamente implementados e ajustados, podem oferecer soluções eficazes para
problemas de navegação robótica em ambientes controlados. O sistema desenvolvido
mostrou-se capaz de detectar com precisão os marcadores visuais e seguir a trajetória
proposta, validando as escolhas técnicas adotadas no projeto.

Como perspectiva para trabalhos futuros, sugere-se a exploração de duas principais vertentes:
a implementação de redes neurais convolucionais para aumentar a robustez do sistema em
condições variáveis, e a combinação entre métodos tradicionais e técnicas de aprendizado de
máquina, buscando aproveitar as vantagens de ambas as abordagens. Estas evoluções
poderiam permitir a aplicação do sistema em cenários mais complexos, mantendo ao mesmo
tempo o caráter pedagógico que se mostrou tão eficaz neste projeto.

6 REFERÊNCIAS

ABDI – AGÊNCIA BRASILEIRA DE DESENVOLVIMENTO INDUSTRIAL. Indústria 4.0: a
nova revolução industrial. Brasília: ABDI, 2019.

CORDEIRO, R.; REIS, D.; FERNANDES, L. Desafios para a Indústria 4.0 no Brasil. Revista
Brasileira de Engenharia, v. 45, n. 2, p. 23-39, 2024.

CNI – CONFEDERAÇÃO NACIONAL DA INDÚSTRIA. Indústria 4.0 e o futuro do trabalho.
Brasília: CNI, 2016.

DUDA, R. O.; HART, P. E. Use of the Hough transformation to detect lines and curves in
pictures. Communications of the ACM, v. 15, n. 1, p. 11–15, jan. 1972.

FERRIANI, A.; RIBEIRO, R. Transformada de Hough na detecção de formas geométricas.
Anais, 2005.

FREIRE, Paulo. Pedagogia da autonomia: saberes necessários à prática educativa. 25.
ed. São Paulo: Paz e Terra, 1996.

GONZALEZ, R. C.; WOODS, R. E. Digital image processing. 3. ed. Upper Saddle River:
Prentice Hall, 2010.

