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Resumo:  Este trabalho consiste no estudo de modelo matemático aplicado ao estudo de carga
hidráulica de aquíferos subterrâneos com abordagem de métodos numéricos para construção de
solução aproximada. O modelo a ser considerado baseia-se na combinação da Lei de Darcy, que
descreve o fluxo de água através de meio poroso, com a equação da continuidade aplicada a estudos
relacionados à velocidade de fluido em uma área de escoamento. A solução numérica do problema
será  abordada  em etapas,  iniciando-se  representação  matemática  do  problema e  dedução  das
equações, estudos dos Métodos de Diferenças Finitas para a solução das equação, discretização do
problema, e finalmente, a elaboração dos códigos para simulações computacionais.
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1 INTRODUÇÃO 

 Os modelos matemáticos constituem ferramentas fundamentais para a 
representação e análise de sistemas complexos, permitindo a previsão de eventos e o 
estudo de estratégias de ação de preservação e mitigação de sistemas em diversas áreas 
do conhecimento. No âmbito dos recursos hídricos, a modelagem matemática desempenha 
um papel importante de compreensão de processos hidrodinâmicos e de avaliação de 
impactos ambientais, fornecendo subsídios para a gestão sustentável desses sistemas. 
 No tocante às águas subterrâneas, a modelagem matemática possibilita análises 
sobre condutividade hidráulica, alterações e potenciais impactos decorrentes de 
intervenções, inclusive antrópicas e acidentes ambientais, com previsão de eventos críticos, 
como contaminações e rebaixamentos do lençol freático. Essa abordagem viabiliza 
simulações e permite estudos e reflexos de medidas preventivas e mitigadoras. 
 A contaminação das águas subterrâneas representa uma grande preocupação e 
está associada à diversas fontes, como vazamentos e falhas na infraestrutura de 
armazenamento, atividades agrícolas, industriais e domésticas. O uso indiscriminado de 
agrotóxicos e fertilizantes no setor agrícola, bem como o descarte inadequado de resíduos 
industriais e domésticos, pode comprometer significativamente a qualidade desse recurso 
hídrico. 
 Dado que mais da metade da população mundial depende das águas subterrâneas 
para o abastecimento de água potável, torna-se essencial adotar uma abordagem de 
gestão fundamentada em estudos científicos. A degradação desses sistemas não apenas 
compromete a qualidade da água consumida pela população, mas também impacta o 
desenvolvimento socioeconômico de diversas regiões, podendo gerar danos ambientais de 
grande escala. Nesse sentido, estudos voltados à carga hidráulica e à qualidade da água 
subterrânea são essenciais para embasar políticas públicas e ações voltadas à preservação 
desse recurso estratégico. É nesse contexto que se insere o presente trabalho, cujo objetivo 
é estudar as águas subterrâneas por meio da modelagem matemática, com a busca por 
soluções analítica e numérica, possibilitando análises e discussões sobre carga hidráulica 
e fatores ambientais que influenciam a qualidade e a disponibilidade do recurso, motivadas 
por simulações computacionais e geração de cenários hipotéticos de estudo. 
 

2 FUNDAMENTAÇÃO TEÓRICA 

 A água, essencial para a manutenção da vida, circula entre a atmosfera, a crosta 
terrestre e os oceanos através do ciclo hidrológico. Após a precipitação, uma parte da água 
é absorvida pela superfície terrestre, uma parte escoa superficialmente até alimentar lagos 
e rios e outra parte, por fim, é utilizada por plantas e animais para subsistência, mesmo que 
em menor quantidade (FEITOSA et al., 2008). 
 Da parte que é absorvida pela superfície terrestre, uma porção se acumulará 
formando reservas de água, denominadas águas subterrâneas, conforme Figura 1. 
 

Figura 1 – Divisão das zonas abaixo da superfície 

terrestre. 



 

 

 

 
Fonte: Feitosa et al., 2008 

 
 Dentre os tipos de armazenamento de água, destacam-se os aquífugos, que são 
composições geológicas impermeáveis, incapazes de armazenar e permitir o fluxo da água; 
os aquicludes, formados por rochas que foram anteriormente submetidas à compactação, 
possuem porosidade efetiva e condutividade hidráulica muito baixas; os aquitardos, que 
possuem pouca capacidade de armazenamento e circulação lenta de água e, finalmente, 
os aquíferos, objeto de estudo nesta pesquisa, que são formações geológicas subterrâneas 
que armazenam e permitem o fluxo de água (WENDLAND, 2023). 
 Os aquíferos possuem alta condutividade hidráulica e alta porosidade, resultando em 
uma grande capacidade de armazenamento e circulação de água (WENDLAND, 2023).  
 Dentre algumas das características presentes em um aquífero, destacam-se a 
porosidade, a condutividade hidráulica e o teor de umidade. A porosidade é dada pela 
relação entre o volume total de um solo e pelo seu volume de vazios, considerando que, no 
volume total, é contabilizado o volume sólido e de vazios; a condutividade hidráulica que é 
uma importante propriedade que rege o movimento da água, ou de qualquer outro fluido no 
solo, e está relacionada à facilidade com que um líquido flui em um solo, por meio de seus 
vazios e o teor de umidade relacionado ao volume de água presente no solo (FREEZE; 
CHERRY, 1079). 
 Características de diâmetro médio do solo, esfericidade e arredondamento dos 
grãos, distribuição e a natureza do seu empacotamento influenciam a condutividade 
hidráulica do meio. Para areias e cascalhos, a condutividade hidráulica é maior do que para 
argilas e rochas (FREEZE; CHERRY, 1079). 
 Os aquíferos também podem ser classificados como livres ou confinados e a pressão 
à qual o aquífero está submetido é de extrema importância para essa distinção. Em 
aquíferos confinados, a pressão exercida no topo do aquífero é maior que a pressão 
atmosférica, enquanto os aquíferos livres encontram-se sob pressão igual à atmosférica.  
 Em aquíferos livres, o limite superior é a superfície de saturação.  
 Quando classificados como confinados, os aquíferos podem se subdividir, ainda, em 
confinados drenantes e não drenantes, com base na permeabilidade de suas camadas 
limítrofes.  
 Os aquíferos confinados não drenantes possuem as camadas superior e inferior 
impermeáveis. Podem ser chamadas, também, de jorrantes. Os aquíferos confinados 
drenantes possuem ao menos uma das camadas permeável ou semipermeável, permitindo, 
assim, o fluxo de água através das camadas superior e/ou inferior. 



 

 

 

 A depender do tipo de aquífero a ser analisado, diferentes condições são 
empregadas para a criação do modelo matemático que o descreva com maior precisão. No 
caso deste trabalho, volta-se a atenção para aquíferos confinados.  
 Como sabido, a qualidade das águas subterrâneas tem sido cada vez mais 
ameaçada pelo aumento da poluição, comprometendo sua disponibilidade e afetando o 
equilíbrio dos ecossistemas naturais. Segundo a literatura, essas águas representam uma 
fração significativa das reservas de água doce acessíveis para consumo no planeta, 
desempenhando um papel fundamental no abastecimento de áreas urbanas e rurais, além 
de contribuírem para a manutenção dos fluxos de rios e lagos (DAO et al., 2024).  
 Embora estejam relativamente protegidos por camadas geológicas, tais sistemas 
não estão isentos de contaminação. Entretanto, sua poluição, muitas vezes, passa 
despercebida devido à ausência de sinais visíveis, dificultando a detecção precoce e a 
implementação de medidas de controle (HIRATA et al., 2019). 
 Muitas formas de contaminação desses sistemas estão associadas ao descarte 
inadequado de resíduos sólidos, especialmente em aterros sanitários mal gerenciados e 
depósitos clandestinos de lixo. Esses locais favorecem a infiltração de substâncias nocivas 
no solo por meio do processo de percolação, comprometendo a qualidade das águas 
subterrâneas (ALVES, 2023).  
 Processos naturais de recarga e descarga também provocam interferências que 
afetam sua qualidade e disponibilidade. Para garantir a eficácia das estratégias de 
mitigação e remediação da contaminação, é essencial a realização de avaliações e 
monitoramentos contínuos, fornecendo subsídios científicos para a tomada de decisão e, 
nesse contexto, a modelagem matemática e as simulações computacionais são importantes 
ferramentas de análise e simulação de cenários, bem como apoio de planejamento de 
estratégias de preservação dos recursos hídricos.  
 

3 METODOLOGIA 
 

 Com os objetivos do trabalho relacionados ao estudo de conservação das águas 
subterrâneas, de modelagem matemática dos fenômenos ambientais, este trabalho se 
desenvolveu com a formulação do modelo matemático que estuda a taxa de variação da 
carga hidráulica, em função do espaço e do tempo, de aquíferos confinados. 
 Realizados os procedimentos de modelamento matemático, buscou-se pela 
resolução analítica da equação e sua formulação numérica para implementação 
computacional e geração de cenários. 
 Para tanto, estudos teóricos acerca das águas subterrâneas, bem como de 
modelamentos matemáticos foram necessários. 
 A resolução analítica da equação foi possível a partir de estudos sobre equações 
diferenciais parciais, com aplicação do método de separação de variáveis e a formulação 
de aproximação numérica, a partir de estudos sobre o Método de Diferenças Finitas. 
 A implementação computacional foi realizada em ambiente Matlab e tornou possível 
o desenvolvimento de simulações computacionais que fomentaram análises e discussões 
sobre o modelo.  

 
4 MODELAGEM MATEMÁTICA 

 
 O estudo de carga hidráulica de aquíferos subterrâneos confinados, de fluxo laminar, 
através de abordagem de modelo matemático, se dá através da combinação da Lei de 
Darcy com a Equação da Continuidade. 



 

 

 

 A Lei de Darcy, descoberta por Henry Darcy em 1856, é utilizada para descrever o 
fluxo de fluido através de meios porosos, incluindo águas subterrâneas (WENDLAND, 
2023), (WOESSNER; POETER, 2020) e é dada pela Equação (1): 
 

                                                         𝑄 =  −𝐾
𝑑ℎ

𝑑𝑙
𝐴                                                         (1) 

 
onde: 

● 𝑄 representa a vazão volumétrica (m³/s); 
● 𝐾 indica a condutividade hidráulica, é a constante de proporcionalidade que reflete a 

facilidade com que a água flui através de um material (m/s); 

● 
𝑑ℎ

𝑑𝑙
 é a taxa de variação de carga hidráulica em função do trecho, e 

● 𝐴 representa a área da seção transversal do fluxo perpendicular à direção do fluxo 
(m²). 

 
 Esta lei descreve como a altura manométrica, os gradientes hidráulicos e a 
condutividade hidráulica estão ligados para quantificar e descrever o fluxo das águas 
subterrâneas. 
 No tocante à Equação da Continuidade, ela é utilizada para garantir que as vazões 
de entrada e saída do aquífero sejam iguais (FREEZE; CHERRY, 1979). Assim, dado um 
volume de controle 𝑉 = 𝛥𝑥𝛥𝑦𝛥𝑧, o balanço de massa é dado pelo que entra menos o que 
sai mais (ou menos) o ganho (ou a perda). 
 Matematicamente sua forma mais geral é dada pela Equação (2): 
 

                                                     
𝜕𝜌

𝜕𝑡
= −𝛻(𝜌𝑞) ± 𝜌𝑄                                                      (2) 

 
onde: 

● 𝜌 é a densidade do fluido (kg/m³); 

● 𝑞 = −𝐾
𝑑ℎ

𝑑𝑙
 que descreve como a altura manométrica, os gradientes hidráulicos e a 

condutividade hidráulica estão ligados para quantificar e descrever o fluxo das águas 
subterrâneas; 

● 𝛻(𝜌𝑞) representa divergência do fluxo e massa. 
  
 O modelo matemático que, estuda a taxa de variação da carga hidráulica ℎ em 
função do tempo 𝑡 em aquíferos confinados, é governado pela equação da difusão da carga 
hidráulica, também chamada de equação da água subterrânea, dado pela Equação (3): 
 

                                                            𝑆
𝜕ℎ

𝜕𝑡
= 𝑇𝛻2ℎ                                                            (3) 

 
onde: 

● ℎ(𝑥, 𝑦, 𝑧, 𝑡) representa a carga hidráulica (altura piezométrica); 
● 𝑆 indica o armazenamento específico (sem unidade); 
● 𝑇 é transmissividade do aquífero (em m²/s); 

● 𝛻2ℎ é o operador Laplaciano em coordenadas espaciais; 
● 𝑡 > 0 (em s) indica o tempo e 0 < 𝑥 < 𝐿 (em m) o domínio espacial.  

  
 Considerando a formulação da equação para estudo da carga hidráulica propagada 
em aquífero confinado ao longo da direção 𝑥 devido à difusão hidráulica, com 𝑆 e 𝑇 
constantes, condições de contorno de Dirichlet homogêneas, e condição inicial ℎ(𝑥, 0) =



 

 

 

𝛿(𝑥), 0 < 𝑥 < 𝐿, a solução analítica do problema é dada pela Equação (4) (BOYCE; 
DIPRIMA; MEADE, 2020): 
 

                                            ℎ(𝑥, 𝑡) = 𝛴𝑛=1
∞ 𝐵𝑛𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
) 𝑒−(

𝑛𝜋

𝐿
)

2𝑇

𝑆
𝑡
                                          (4) 

 

com: 𝐵𝑛 =
2

𝐿
∫ 𝑓(𝑥)𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝐿
)

𝐿

0
𝑑𝑥. 

  
 Com vistas à resolução aproximada do problema e implementação computacional, 
buscou-se, através do Método de Diferenças Finitas, a discretização do modelo em suas 
variáveis espacial, 𝑥, e temporal, 𝑡 (FONTANA, 2019). 

 Através da aplicação do método explícito avançado para a variável temporal 𝑡, a 

aproximação da derivada temporal 
𝜕ℎ

𝜕𝑡
 no ponto 𝑖, entre os tempos 𝑡(𝑛) e 𝑡(𝑛+1) é dada na 

Equação (5): 
 

                                                          
𝜕ℎ

𝜕𝑡
≈

ℎ𝑖
(𝑛+1)

− ℎ𝑖
(𝑛)

𝛥𝑡
                                                         (5) 

 
onde:  
 

● ℎ𝑖
(𝑛+1)

 indica o valor aproximado da função ℎ no ponto 𝑖 no tempo (𝑛 + 1); 

● ℎ𝑖
(𝑛)

 indica o valor aproximado da função ℎ no ponto 𝑖 no tempo (𝑛); 
● 𝛥𝑡 representa o incremento no tempo entre os instantes  (𝑛) e (𝑛 + 1). 

  
 Considerando a ordem do esquema explícito do método numérico para a variável 
temporal (primeira ordem), o erro de truncamento local é 𝑂(△ 𝑡). 

 Para a variável espacial 𝑥, com passo 𝛥𝑥 = 𝑥𝑖+1 − 𝑥𝑖, a aproximação de 
𝜕²ℎ

𝜕𝑥²
 se dá na 

forma da Equação (6): 
 

                                                       
𝜕²ℎ

𝜕𝑥²
≈

ℎ𝑖+1
(𝑛)

− 2ℎ𝑖
(𝑛)

+ℎ𝑖−1
(𝑛)

(𝛥𝑥)²
                                                     (6) 

  
O erro de truncamento local do método de diferenças centradas para a variável espacial é 
da ordem de 𝑂(△ 𝑥2).  

 Substituindo a Equação (5) e a Equação (6), de aproximação de 
𝜕ℎ

𝜕𝑡
 e 

𝜕²ℎ

𝜕𝑥²
, na equação 

diferencial proposta, Equação (3), tem-se a Equação (7), denominada solução aproximada 
do modelo: 
 

                                    ℎ𝑖
(𝑛+1)

= ℎ𝑖
(𝑛)

+ 𝛥𝑡.
𝑇

𝑆
. (

ℎ𝑖+1
(𝑛)

 − 2ℎ𝑖
(𝑛)

+ℎ𝑖−1
(𝑛)

𝛥𝑥²
)                                           (7) 

 
onde: 

● ℎ𝑖+1
(𝑛)

 representa o valor aproximado da função ℎ no ponto 𝑖 + 1 no tempo (𝑛); 

● ℎ𝑖−1
(𝑛)

 representa o valor aproximado da função ℎ no ponto 𝑖 − 1 no tempo (𝑛). 

 

 O critério de estabilidade do método é 𝛼 =
𝑇𝛥𝑡

𝑆(△𝑥)2 ≤
1

2
. 

  



 

 

 

 As soluções analítica e numérica foram implementadas computacionalmente em 
ambiente Matlab, de acordo o algoritmo descrito no Quadro 1. 
 
Quadro 1. Algoritmo 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Os gráficos da solução analítica e numérica seguem apresentados na Figura 2, onde 
adotou-se, hipoteticamente, comprimento L=1 m, coeficiente de transmissividade do 
aquífero T=0,001 m2/s, armazenamento específico S=0,0001, Nx=100, Nt=500, condição 
inicial: função delta de Dirac h(x,0)=f(x)= δ(x−x0) e condições de contorno de Dirichlet 
homogêneas. 
 Como pode ser observado no gráfico, Figura 2, as soluções apresentam uma 
evolução difusiva, com pulso inicial na região central, se espalhando ao longo do tempo, 
com a altura do pico diminuindo e a largura aumentando, mantendo a conservação da 
massa.  
 Verifica-se, também, a forma geral das curvas, que se mantém semelhante entre as 
soluções, com pequena diferença, conforme esperado. 
 No tocante à solução analítica, representada em linha vermelha tracejada na Figura 
2, tem-se a solução exata do modelo, indicada na Equação (3) e é importante ressaltar que 
seu desenvolvimento requer a abordagem de conceitos complexos de matemática, 
vinculados à resolução de equações diferenciais parciais.  
 Em linha contínua azul, na Figura 2, encontra-se representada a solução aproximada 
do modelo, que é bem adequada para simulações computacionais e útil em casos em que 
não existe a solução analítica. Entretanto, ressalta-se que tal solução está sujeita a erros 
numéricos e dependente do tamanho da malha: quanto menor o tamanho do passo dx, no 
domínio, e dt, no tempo, melhor a aproximação, mas os cálculos computacionais são mais 
lentos. 
 
 
 

Figura 2 – Soluções analítica e numérica da Equação 

(3) implementada em ambiente Matlab. 

1. Definir os parâmetros físicos do modelo; 

2. Definir malha espacial e temporal indicando vetor de posições: x e t; 
o número de pontos no espaço: Nx e tempo Nt e o espaçamento domínio 
dx e tempo dt, obedecendo o critério de estabilidade; 

3. Definir condição inicial (pulso no centro) dada pela função Delta de 
Dirac; 

4. Para solução numérica via diferenças finitas explícitas: inicializar matriz 
hnum, aplicar condição inicial, fazer a iteração no tempo e atualizações; 

5. Para solução analítica via série de Fourier: inicializar matriz hanalit, 
calculando para cada tempo n e termo m da série o autovalor e o 
coeficiente de Fourier, atualizando a solução analítica; 

6. Plotar hnum(x, t_final) e hanalit(x, t_final) no mesmo gráfico 



 

 

 

 
Fonte: Da autora 

 
 Com vistas à simulação de um cenário um pouco mais próximo do real, tomou-se a 
simulação apresentada pela solução numérica, Figura 3, com as mesmas condições iniciais 
e de contorno adotadas inicialmente, assumindo como parâmetros o comprimento L=100 
m, o coeficiente de transmissividade do aquífero T=0,00005 m2/s (referente a aquífero de 
aproximadamente 50m de espessura, em meio caracterizado por pouca porosidade e 
condutividade hidráulica baixa, de 0,000001m/s) e o armazenamento específico S=0,0001 
(referente a aquíferos confinados), que representam as três principais características dos 
aquíferos confinados. 
 

Figura 3 – Evolução de solução numérica ao longo do 
tempo. 

 

Fonte: Do autor  
  
 Desta forma, verifica-se, na Figura 3, como o pulso localizado na região central do 
domínio físico se alarga e se achata, representando o efeito da difusão. Também se verifica 
no gráfico a simetria em torno da região central, como esperado em virtude das condições 
de contorno homogêneas e do pulso centrado.  



 

 

 

 Importante ressaltar que a equação de difusão conserva a massa total, pois não há 
fonte ou sumidouro. Portanto, é esperado que a área sob a curva se conserve também.  
 A cada curva plotada (para cada valor de t), verifica-se um perfil de onda mais larga 
e mais baixa, indicando o espalhamento da massa.  
 

5 CONCLUSÃO 

 Estudos de modelagem matemática aplicados às águas subterrâneas são 
ferramentas relevantes que favorecem compreensões e predições de impactos ambientais. 
Ao combinar teoria, simulação e prática, tais abordagens fomentam discussões e subsidiam 
análises a favor da conservação dos recursos hídricos. 
 A partir do estudo realizado, foi possível representar fenômenos ambientais 
complexos, como fluxo subterrâneo e o transporte de poluentes de aquíferos, baseado na 
equação diferencial parcial da difusão, com estudos teóricos e resoluções analíticas. 
 A resolução numérica do problema possibilitou a construção de soluções 
aproximadas com simulações computacionais e favoreceu o teste de diferentes parâmetros, 
de fomento à análise do modelo, dentro de um contexto de estudo e discussões sobre 
impacto ambiental. Essas simulações também possibilitaram comparações entre a solução 
analítica e numérica. Também foi possível verificar, por meio dessas simulações, o 
comportamento da difusão, simétrica em torno do ponto de aplicação da fonte, como 
previsto pela natureza da equação e da condição inicial. 
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MATHEMATICAL MODEL FOR STUDIES OF CONTAMINATION IN AQUATIC SYSTEMS 
 
Abstract: This work aims to study a mathematical model focused on analyzing hydraulic 
heads in groundwater aquifers, using numerical methods to obtain approximate solutions. 
The proposed model is based on the combination of Darcy's Law, which describes water 
flow through porous media, and the continuity equation, applied to the analysis of fluid 
velocity in flow regions. Once the model is established, both an analytical solution and a 
numerical approach using the Finite Difference Method are proposed. Finally, the model is 
implemented computationally through the development of simulation codes, followed by an 
analysis of the obtained results. 
 
Keywords: mathematical modeling, water resources pollution, aquifers and numerical 
methods. 
 
 




