FORMULAÇÃO MATEMÁTICA E IMPLEMENTAÇÃO COMPUTACIONAL NO MATLAB DE MODELOS FÍSICOS DISCRETOS

Adeildo Soares Ramos Júnior – adramos@ctec.ufal.br Universidade Federal de Alagoas, Departamento de Engenharia Estrutural Campus Universitário A C. Simões – BR 104 Km 97 - Tabuleiro do Martins 57072-970 - Maceió - AL Luciana C. L. Martins Vieira – lvieira@ctec.ufal.br Universidade Federal de Alagoas, Programa Especial de Treinamento/Eng. Civil Campus Universitário A C. Simões – BR 104 Km 97 - Tabuleiro do Martins 57072-970 - Maceió - AL

Resumo. Neste trabalho apresentam-se o desenvolvimento matemático e a implementação computacional de modelos físicos discretos nas áreas de Mecânica, Hidráulica, Transferência de Calor e Eletricidade buscando-se sistematizar suas soluções em regime estacionário. A metodologia aqui apresentada permite ao aluno, de um curso introdutório do Método dos Elementos Finitos, revisar e sedimentar conceitos previamente estudados nas diversas áreas supracitadas. equacionar matematicamente е implementar computacionalmente suas soluções. Após essa fase, o aluno estará mais bem preparado para lidar com a solução discretizada de problemas contínuos. Utiliza-se para implementação computacional o programa MATLAB, onde se explora recursos de programação de alto nível, a exemplo de recursos de estrutura de dados e tratamento de matrizes esparsas.

Palavras-chave: Elementos Finitos, MATLAB, Mecânica, Eletricidade, Hidráulica

1. INTRODUÇÃO

Diversos problemas de engenharia são regidos por equações diferenciais ou sistemas de equações diferenciais que são matematicamente equivalentes. A solução analítica destes problemas é difícil ou impossível de ser obtida, requerendo em geral uma solução aproximada, que pode ser obtida por alguma técnica de discretização como o método dos elementos finitos ou o método das diferenças finitas. Este artigo apresenta uma metodologia que visa padronizar os conceitos, formulação matemática e implementação computacional de sistemas discretos mecânicos, hidráulicos, elétricos e térmicos, permitindo assim ao aluno, que inicia o curso profissionalizante de engenharia, a lidar com os procedimentos de solução utilizados normalmente nas técnicas de aproximação e a sedimentar os conceitos básicos destas áreas, através da sistematização e implementação de suas soluções.

2. MODELOS FÍSICOS

Na apresentação dada a seguir, procura-se unificar o equacionamento matemático e a implementação computacional dos modelos físicos discretos mecânicos, térmicos, hidráulicos e elétricos em regime estacionário.

A formulação apresentada baseia-se nas idéias apresentadas em Kwon e Bang (1996) e Bathe (1982). A representação desses modelos será baseada em dois tipos básicos de entidades denominados nós e elementos, conforme desenho esquemático apresentado na Fig. 1.

2.1 Relações básicas

As leis físicas deverão ser satisfeitas nos nós e nos elementos que compõe cada tipo de modelo, que se caracteriza também pelas relações constitutivas em cada elemento e pelas relações de compatibilidade nodal. Na Tabela 1 estão resumidas as relações básicas para cada tipo de modelo físico e na Tabela 2 as grandezas físicas pertencentes a cada modelo e representadas pelas letras f, $u \in k$.

Tabela 1 - Relações básicas							
Sistemas Lei Física		ísica	Constitutiva		Compatibilidade		
Mecânico	nico Equilíbrio de Forças		Lei de Hooke		Deslocamento		
Hidráulico	Cont. de Fluxo		Lei	de Darcy	Pressão		
Térmico	Cont. de Flux	o térmico	térmico Lei de Fourier		Temperatura		
Elétrico	Cont. de Corr	rente	Lei de Ohm		Voltagem		
Tabela 2 - Grandezas físicas							
Sistemas	f	и			k		
Mecânico	Força	Deslocamento		Coeficiente de rigidez			
Hidráulico	Vazão	Pressão		Fator de carga			
Térmico	Fluxo de calor	Temperatura		Coeficiente de condução de calor			
Elétrico	Corrente	Voltagem		Condutância			

2.2 Sistemas de coordenadas

A representação das grandezas físicas vetoriais, ou seja, a força e deslocamento do sistema mecânico e a vazão, o fluxo de calor e a corrente nos modelos hidráulico, térmico e elétrico respectivamente, requerem a definição de um sistema de coordenadas. Para representa-las foram definidos três sistemas de coordenadas, denominados sistemas global, local e interno. Na Fig.1 está representado o sistema de coordenadas global para o sistema mecânico e na Tabela 3 os sistemas interno e local para cada modelo físico. A representação do sistema global nos demais modelos foi definida como positiva nos casos em que a vazão, o fluxo de calor e a corrente entram no sistema.

2.3 Matriz constitutiva do elemento

A caracterização das propriedades físicas de cada modelo é definida pelas relações constitutivas no sistema interno de coordenadas através da equação:

$$f = \mathbf{a} \cdot k \cdot (u_i - u_i) \tag{1}$$

onde f, $u \in k$ são as grandezas físicas apresentadas na Tabela 2 e α um fator de correção que tem valor unitário para o modelo mecânico e -1 para os outros modelos. Os índices $i \in j$ na variável u referem-se aos nós de extremidade do elemento (Tabela 3).

Relacionando as grandezas nodais de um elemento n (no sistema local) com as grandezas no sistema interno, têm-se as seguintes relações no elemento, que satisfazem as leis físicas apresentadas na Tabela 1

$$\begin{cases} f_i \\ f_j \end{cases}^n = \mathbf{a} \cdot \begin{cases} -f \\ f \end{cases}^n = \begin{bmatrix} k & -k \\ -k & k \end{bmatrix}^n \cdot \begin{cases} u_i \\ u_j \end{cases}^n$$
(2)

que pode ser representada matricialmente na forma

 $\mathbf{f}_{e}^{n} = \mathbf{k}_{e}^{n} \cdot \mathbf{u}_{e}^{n} \tag{3}$

Organizando as matrizes e vetores de todos os elementos em um sistema de equações lineares único, obtém-se

$$\mathbf{f}_{e} = \mathbf{k}_{e} \cdot \mathbf{u}_{e} \tag{4}$$

onde

$$\mathbf{f}_{e} = \begin{cases} \mathbf{f}_{e}^{1} \\ \mathbf{f}_{e}^{2} \\ \mathbf{M} \end{cases}$$
(5)

$$\mathbf{u}_{e} = \begin{cases} \mathbf{u}_{e}^{1} \\ \mathbf{u}_{e}^{2} \\ \mathbf{M} \end{cases}$$
(6)

$$\mathbf{k}_{e} = \begin{bmatrix} \mathbf{k}_{e}^{1} & \mathbf{0} & \mathbf{\Lambda} \\ \mathbf{0} & \mathbf{k}_{e}^{2} & \mathbf{\Lambda} \\ \mathbf{M} & \mathbf{M} & \mathbf{O} \end{bmatrix}$$
(7)

2.4 Relações nodais

Em cada nó deverão ser satisfeitas as leis físicas e as relações de compatibilidade. Para um nó m as leis físicas poderão ser representadas através da equação

$$f_m = \sum_{i=1}^N f_m^i \tag{8}$$

onde N é o número de elementos conectados ao nó m, f_m a grandeza física f global associada ao nó m e f_m^i a grandeza física do nó m do elemento i. Organizando matricialmente para todos os nós, pode-se equacionar na forma

$$\mathbf{f} = \mathbf{H} \cdot \mathbf{f}_{e} \tag{9}$$

onde **H** é denominada matriz de equilíbrio para o sistema mecânico e de continuidade para os demais e **f** é o vetor global das grandezas físicas f.

De modo equivalente, as relações de compatibilidade nodal podem ser descritas pelas equações

$$\mathbf{u}_{e} = \mathbf{A} \cdot \mathbf{u} \tag{10}$$

onde A é a matriz de compatibilidade e **u** é o vetor global das grandezas físicas *u*.

2.5 Equacionamento

Relacionando as Equações (4), (9) e (10), chega-se a seguinte expressão:

 $\mathbf{f} = \mathbf{K} \cdot \mathbf{u} \tag{11}$

onde K é a matriz global associada as grandezas físicas k que pode ser obtida pela equação

$$\mathbf{K} = \mathbf{H} \cdot \mathbf{k}_{e} \cdot \mathbf{A} \tag{12}$$

Em geral, nos sistemas mecânicos \mathbf{K} é denominada matriz de rigidez da estrutura, nos sistemas hidráulicos matriz de pressões, no sistema elétrico matriz de condutância e no térmico matriz de condução de calor.

A montagem da matriz **K** pode ser feita pelo método direto, evitando a montagem e a multiplicação das três matrizes da equação (12) e reduzindo assim o esforço computacional durante a solução. Este procedimento consiste em observar a influência que a matriz local de cada elemento (\mathbf{k}_{e}^{n}) tem na montagem da matriz **K**. Na Figura 2 apresenta-se esquematicamente este resultado. Observa-se que o número das linhas e das colunas em relação às quais um elemento *n* está associado está relacionado com o número dos nós aos quais ele está conectado.

Fig. 2. Posição da matriz local do elemento *n* na matriz **K** do modelo

2.6 Condições de contorno

Na Equação (11), parcela das incógnitas está associada ao vetor **u** e parcela ao vetor **f**, requerendo um rearranjo das equações para obtenção da solução. Para solucionar este problema, evitando o rearranjo das equações e facilitando a implementação computacional, adotou-se o método da penalidade, que consiste em somar um número b de ordem de grandeza elevada a todos os elementos da diagonal da matriz **K** que estejam associados a valores prescritos de $u(\bar{u}_n)$ no vetor **u** e substituir estas mesmas posições no vetor **f** pelo fator b $\cdot \bar{u}_n$. Resolvendo-se o sistema de equações modificado obtém-se a solução.

3. IMPLEMENTAÇÃO COMPUTACIONAL

A implementação computacional do equacionamento anteriormente apresentado foi feita no programa MATLAB 5.2, onde foram explorados recursos de programação de alto nível. Dentre estes recursos se destacam: o tratamento de matrizes esparsas, os recursos de estruturação de dados e as técnicas de vetorização das operações matriciais.

3.1 Estrutura de dados

A estrutura de dados definida baseia-se nos nós e nos elementos do modelo. Para cada uma destas entidades definem-se estruturas que representarão seus dados. Para os nós definem-se dois campos visando representar as grandezas físicas f e u e para os elementos definem-se campos para armazenar sua conectividade (número dos nós aos quais eles estão conectados), seu coeficiente k e sua grandeza física f. A representação deste esquema na linguagem de programação do MATLAB está mostrada na Fig. 3.

```
elem(1).k = 20*10^6;
elem(1).cnt = [1 2];
no(1).u = 1; % valor prescrito
no(1).f = []; % valor desconhecido
```

Figura 3. Estrutura de dados para os elementos e nós

3.2 Algoritmo de solução e funções do MATLAB

A solução de um problema requer a determinação em cada nó das grandezas nodais u ou f desconhecidas no sistema global de coordenadas e das grandezas f no elemento no sistema interno de coordenadas. As principais etapas de solução de um problema genérico estão resumidas no algoritmo apresentado na Fig. 4.

1.	Definição dos dados de entrada
2.	Montagem da matriz K e do vetor f
3.	Estabelecimento das Condições de Contorno
4.	Solução do sistema de equações modificado:
	$\overline{\mathbf{K}}\mathbf{u} = \overline{\mathbf{f}}$
5.	Cálculo das grandezas físicas f nos elementos
6.	Cálculo das grandezas nodais desconhecidas $u e f$

Figura 4. Algoritmo de solução

A funções do MATLAB para as etapas 2, 3, 5 e 6 do algoritmo da Fig. 4, estão representadas respectivamente nas Figs. 5, 6, 7 e 8.

```
function [fg,kg] = kfglobal(elem,no)
% Função para montar K e f
% Num de elementos e de graus de nós
nelem = length(elem);
nnos = length(no);
% Definição da matriz K como esparsa
kg = sparse(nnos,nnos);
for i=1:nelem
   % Matriz local dos elementos
   ke = elem(i).k * [1 -1 ; -1 1];
   % Vetor de conectividades
   cnt = elem(i).cnt;
   % Montagem da matriz K global
   kg(cnt,cnt) = kg(cnt,cnt) + ke;
end
% Montagem do vetor f
for i=1:nnos
   if isempty(no(i).fp)
       fg(i) = 0;
   else
       fg(i) = no(i).fp;
   end
end
fg = fg';
```

Figura 5. Função .m do MATLAB para montar K e f

```
function [fga,kga] = contorno(kg,fg,no)
% Função para definição das condições
% de contorno

nnos = length(no);
beta = 10^20*max(diag(kg));
kga = kg;
fga = fg;

for i=1:nnos
    if isempty(no(i).f)
        kga(i,i) = kg(i,i) + beta;
        fga(i) = beta * no(i).u;
    end
end
```

Figura 6. Função .m do MATLAB para estabelecer as condições de contorno

```
function elem = felem(elem,u,alfa)
% Função para cálculo da grandeza física
% f nos elementos
nelem = length(elem);
for i =1:nelem
    noi = elem(i).cnt(1);
    noj = elem(i).cnt(2);
    du = u(noj)-u(noi);
    elem(i).f = alfa * elem(i).k * du;
end
```

Figura 7. Função .m do MATLAB para cálculo de f nos elementos

```
function no = fnodal(no,u,kg)
% Função para cálculo da grandezas nodais
nnos = length(no);
for i=1:nnos
    if isempty(no(i).f)
        no(i).f = kg(i,:)*u;
    else
        no(i).u = u(i);
    end
end
```

Figura 8. Função .m do MATLAB para cálculo de f e u nos nós

4. EXEMPLOS

A seguir apresentam-se dois exemplos ilustrativos de um modelo mecânico e de um modelo hidráulico. Em cada caso ilustram-se as potencialidades da formulação matemática e da implementação computacional apresentadas.

4.1 Exemplo mecânico

Na Fig. 9 apresenta-se o desenho esquemático do modelo que será analisado neste exemplo. Os seguintes valores foram atribuídos para os coeficientes de rigidez das molas: $k_1 = 300 \text{ kN/m}$, $k_2 = 200 \text{ kN/m}$, $k_3 = 300 \text{ kN/m}$, $k_4 = 200 \text{ kN/m}$, $k_5 = 300 \text{ kN/m}$. No nó 1, o

deslocamento u_1 é nulo (valor prescrito) e no nó 4 a força f_4 tem valor 10 kN com as forças nos outros nós nulas.

Fig. 9. Desenho esquemático do modelo mecânico

Na Fig. 10 apresenta-se o arquivo com os dados de entrada e o algoritmo de solução.

```
clear all
alfa = 1; % Problema mecânico
% Dados dos elementos
elem(1).k=300;
elem(1).cnt=[1 2];
elem(2).k=200;
elem(2).cnt=[2 3];
elem(3).k=300;
elem(3).cnt=[2 3];
elem(4).k=200;
elem(4).cnt=[2 4];
elem(5).k=300;
elem(5).cnt=[3 4];
% Dados nodais
no(1).u = 0;
no(2).f = 0;
no(3).f = 0;
no(4).f = 10;
% Algoritmo de solução
   % Matriz K e vetor f global
   [fg,kg] = kfglobal(elem,no)
   % Condições de contorno
   [fga,kga] = contorno(kg,fg,no);
   % Vetor dos deslocamentos
   u = kga\fga;
   % Vetor das foças normais (elemento)
   elem = felem(elem,u,alfa)
   % Calculo das grandezas f e u nos nós
   no = fnodal(no,u,kg);
```

Fig. 10. Arquivo do MATLAB com os dados de entrada e o algoritmo de solução do exemplo mecânico

Na Tabela IV estão apresentados os resultados da análise para os elementos e nós.

Tabela 4 - Resultados – Exemplo 1					
Elemento	f (kN)	Nó	<i>u</i> (m)	$f(\mathbf{kN})$	
1	-10.00	1	0.000	-10	
2	1.93	2	0.033	0	
3	2.90	3	0.043	0	
4	5.16	4	0.059	10	
5	4.83				

4.2 Exemplo hidráulico

Na Fig. 11 apresenta-se o desenho esquemático de um modelo hidráulico. Os seguintes valores foram atribuídos para o fator de carga k para os elementos tubulares: $k_1=3$ m/s^2 f₄, u₄

Fig. 10. Desenho esquemático do modelo hidráulico

 $k_2 = 5 m/s^2$, $k_3 = 3 m/s^2$, $k_4 = 2 m/s^2$, $k_5 = 2 m/s^2$, $k_6 = 2 m/s^2$, $k_7 = 4 m/s^2$, $k_8 = 2 m/s^2$, $k_9 = 3 m/s^2$, k_{10} = 3 m/s². No nó 1 tem-se um valor de pressão prescrito de 10 m e no nó 7 uma vazão, saindo do sistema, de 8 m³/s sendo os outros valores nodais com vazão nula.

Observa-se pelas conectividades dos elementos mostradas na Fig. 12 que o sentido positivo para o fluxo no sistema interno de coordenadas é aquele representado pelas setas azuis na Fig. 10. A seqüência de definição dos nós das conectividades altera apenas o sinal da vazão nos elementos.

Nota-se ainda que, para estes modelos físicos, a prescrição apenas das grandezas físicas globais f levará a uma singularidade na matriz K, fazendo com que não exista solução única para o problema.

Tabela 5 - Resultados – Exemplo 2						
Elemento	f (kN)	Nó	<i>u</i> (m)	$f(\mathbf{kN})$		
1	8.00	1	10.00	8		
2	4.04	2	7.33	0		
3	2.28	3	6.61	0		
4	1.66	4	6.53	0		
5	2.08	5	6.43	0		
6	-1.94	6	5.52	0		
7	3.97	7	1.52	-8		
8	8.00					
9	0.06					
10	0.20					

Tabala 5 Pagultados Example 2

```
clear all
alfa = -1; % Problema hidráulico
% Dados dos elementos
elem(1).k = 3;
elem(1).cnt = [1 2];
elem(2).k = 5;
elem(2).cnt = [2 4];
elem(3).k = 3;
elem(3).cnt = [2 3];
elem(4).k = 2;
elem(4).cnt = [2 5];
elem(5).k = 2i
elem(5).cnt = [3 6];
elem(6).k = 2;
elem(6).cnt = [6 5];
elem(7).k = 4;
elem(7).cnt = [4 6];
elem(8).k = 2i
elem(8).cnt = [6 7];
elem(9).k = 3;
elem(9).cnt = [4 5];
elem(10).k = 3;
elem(10).cnt =[3 5];
% Dados nodais
no(1).u = 10;
no(2).f = 0;
no(3).f = 0;
no(4).f = 0;
no(5).f = 0;
no(6).f = 0;
no(7).f = -8;
% Ver Fig. 10 para o algoritmo de
% solução
```

Fig. 12. Arquivo do MATLAB com os dados de entrada do exemplo hidráulico

5. CONCLUSÕES

O equacionamento e a implementação computacional apresentados permitiu unificar os procedimentos de solução para sistemas discretos em regime estacionário. No exemplo apresentado foi possível, através da implementação feita para um modelo genérico, obter a solução de um modelo mecânico e um modelo hidráulico discreto em regime estacionário.

REFERÊNCIAS

- K. J. Bathe, "Finite Element Procedures in Engineering Analysis", Prentice-Hall, Englewood Cliffs, NJ, 1982.
- Y. W. Kwon and H. Bang, "The Finite Element Method using MATLAB", Editor CRC Mechanical Engineering Series, University of Minnesota, 1996.